Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена изучению оценок скалярных произведений векторных полей и их применению при доказательстве разрешимости задач математической физики. В работе доказаны оценки скалярных произведений векторных полей в весовых функциональных пространствах суммируемых функций. В качестве примера применения таких оценок доказана разрешимость задачи об определении стационарного магнитного поля в трёхмерном евклидовом пространстве, содержащем ограниченную проводящую область. Также показана связь предложенной постановки задачи и соответствующей вариационной формулировки. Изучена возможность определения остальных неизвестных функций (электрического поля, объёмной плотности электрических зарядов) внутри проводящей подобласти.
-
О компактных T1-пространствах, с. 20-27Рассматриваются пространства, всякие подпространства которых компактны. Будем называть такие пространства наследственно компактными. В работе рассматриваются вопросы о существовании и способах построения наследственно компактных T1-топологий. Доказано существование 2τ попарно несравнимых наследственно компактных T1-топологий на бесконечном множестве X мощности τ. Получены характеристики наследственно компактных пространств. Доказано, что тихоновское произведение конечного числа наследственно компактных T1-пространств является наследственно компактным T1-пространством. Доказано, что тихоновское произведение бесконечного числа неодноточечных наследственно компактных T1-пространств не является наследственно компактным.
-
По теореме Хьюитта–Марчевского–Пондишери тихоновское произведение $2^\omega$ сепарабельных пространств сепарабельно. Мы продолжаем исследовать проблему существования в тихоновском произведении $\prod\limits_{\alpha\in 2^\omega}X_\alpha$ сепарабельных пространств плотного счетного подмножества, не содержащего нетривиальных сходящихся последовательностей. Мы говорим, что последовательность $\lambda=\{x_n\colon n\in\omega\}$ является простой, если для каждого $x_n\in\lambda$ множество $\{n'\in\omega\colon x_{n'}=x_n\}$ конечно. Мы доказываем, что в произведении $\{Z_\alpha\colon\alpha\in 2^\omega\}$ сепарабельных пространств, где всякое $Z_\alpha$ $(\alpha\in\omega)$ содержит простую несходящуюся последовательность, есть счетное плотное множество $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, которое не содержит нетривиальных сходящихся в $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ последовательностей.
-
О проекциях произведений пространств, с. 409-413Рассматриваются всюду плотные подмножества произведений топологических пространств. Доказано, что в произведении $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ где $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ сепарабельных пространств существуют счетные всюду плотные множества такие, что всякие счетные их подмножества имеют проекции на грани, обладающие дополнительными свойствами. Это позволяет доказать ряд фактов о всюду плотных множествах, в частности отсутствие сходящихся последовательностей, оценивать характер замкнутых подмножеств произведений.
-
Корректная разрешимость задач управления для систем дифференциальных уравнений неявного вида, с. 49-64Сформулированы теоремы о существовании решений, оценках решений и корректной разрешимости уравнений с накрывающими отображениями в произведении метрических пространств. Рассмотрены условия накрывания оператора Немыцкого в функциональных пространствах. Утверждения о накрывающих отображениях применяются к исследованию управляемых систем, описываемых обыкновенными дифференциальными уравнениями, не разрешенными относительно производной искомой функции. Получены условия существования решений и их оценки, а также исследован вопрос непрерывной зависимости решений от параметров управляемых систем дифференциальных уравнений со смешанными ограничениями на управление и дополнительным ограничением на производную решения.
-
Об одной задаче корректности минимакса, с. 275-280В теории игр и теории исследования операций часто появляется минимакс от функции $f(x,y)$, зависящей от двух векторных переменных $x$, $y$. Изучению свойств минимакса (или максимина) посвящено много работ. Минимакс можно трактовать как наименьший гарантированный результат для минимизирующего игрока (минимизирующей оперирующей стороны). При изучении минимаксных задач определенный интерес представляют различные вопросы о корректности. Одному из таких вопросов посвящена настоящая статья. В ней векторы $x$, $y$ принадлежат компактам $P$, $Q$ из соответствующих евклидовых пространств $R^k$, $R^l$, а функция $f(x,y)$ непрерывна на произведении пространств $R^k\times R^l$. В статье рассматривается вопрос о зависимости минимакса от малых изменений компактов $P$, $Q$ в метрике Хаусдорфа. Обосновывается непрерывность зависимости минимакса от малых вариаций множеств $P$, $Q$.
-
Фильтры и сцепленные семейства множеств, с. 444-467Исследуются свойства ультрафильтров (у/ф) и максимальных сцепленных систем (МСС) на широко понимаемом измеримом пространстве (ИП), а также некоторые представления сцепленных (не обязательно максимальных) систем и фильтров на упомянутом ИП. Исследуются условия, обеспечивающие максимальность сцепленных семейств (систем), а также естественные представления для битопологических пространств (БТП), точками которых являются у/ф и МСС. Изучаются оснащения множеств сцепленных семейств и фильтров, отвечающие схемам Волмэна и Стоуна, а также связь данных оснащений (топологиями) с аналогичными оснащениями множеств у/ф и МСС, приводящими к вышеупомянутым БТП. Исследуются свойства определяемых естественным образом произведений сцепленных семейств и МСС на двух (широко понимаемых) ИП. Показано, что МСС на произведении $\pi$-систем (то есть на семействе «измеримых» прямоугольников) исчерпываются произведениями соответствующих МСС на исходных пространствах.
-
Данная статья посвящена изучению структуры топологических левых (или правых) квазигрупп, которые играют большую роль в некоммутативной геометрии. Факторные и трансверсальные отображения важны в теории дифференцируемых многообразий, а также топологических многообразий. Исследуются факторные и трансверсальные отображения для топологических квазигрупп, выясняются необходимые и достаточные условия их непрерывности. Приводятся примеры топологических левых квазигрупп и луп. Изучаются однородные пространства, ассоциированные с квазигруппами и их подквазигруппами. С этой целью исследуется произведения топологических левых (или правых) квазигрупп специального вида, которые называются сокрушающими. С их помощью описывается обширное семейство топологических недискретных левых (или правых) квазигрупп, для которых трансверсальное отображение непрерывно.
-
К вопросу о представлении компактов Стоуна, с. 156-174Рассматриваются вопросы, связанные с представлением ультрафильтров измеримых пространств и конечно-аддитивных (0,1)-мер в интересах последующего применения в конструкциях расширений абстрактных задач о достижимости и экстремальных задач. Исследуются свойства, связанные с применением (обобщенных) декартовых произведений и их подпространств, а также свойство, имеющее смысл отождествимости ультрафильтров и конечно-аддитивных (0,1)-мер и реализуемое в виде гомеоморфизма естественных топологий.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.