Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.
-
К задаче Черноусько, с. 62-67Рассматривается задача простого преследования группой преследователей одного убегающего при условии, что среди преследователей имеются как участники, максимальные скорости которых совпадают с максимальной скоростью убегающего, так и участники, у которых максимальные скорости строго меньше максимальной скорости убегающего, и при этом убегающий не покидает пределы выпуклого многогранного множества. Получены условия, при которых преследователи с меньшими возможностями не влияют на разрешимость задачи уклонения.
-
Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из основных задач математической теории управления - задача о сближении фазового вектора управляемой системы с компактным целевым множеством в фазовом пространстве в фиксированный момент времени. В этой работе в качестве целевого множества выбрано множество Лебега скалярной липшицевой функции, определенной на фазовом пространстве. Упомянутая задача о сближении тесно связана с многими важными и ключевыми задачами теории управления, в частности с задачей об оптимальном по быстродействию приведении управляемой системы на целевое множество. Из-за сложности задачи о сближении для нетривиальных управляемых систем аналитическое представление решений невозможно даже для относительно простых управляемых систем. Поэтому в настоящей работе мы изучаем прежде всего вопросы, связанные с конструированием приближенного решения задачи о сближении. Конструирование приближенного решения тем методом, который изложен в работе, связано прежде всего с конструированием интегральной воронки управляемой системы, представленной в так называемом «обратном» времени. К настоящему времени известно несколько алгоритмов конструирования разрешающего программного управления в задаче о сближении. Здесь представлен алгоритм построения управления, основанный на максимальном притяжении движения системы к множеству разрешимости задачи о сближении. В работе приведены примеры.
-
Рассмотрены трехмерные задачи узлов для простой кубической решетки и твердых сфер, находящихся в хаотическом движении. Установлены дополнительные (к двухпоказательному скейлингу) соотношения между индексами: 2-α-γ=ν (или νd-γ=ν) и β=-2α. Определены численные значения трехмерных критических индексов: α=-2/11, η=0, β=4/11, ν=8/11, γ=16/11 и δ=5.
-
Рассматриваются две задачи простого преследования группой преследователей группы убегающих. Первая задача посвящена преследованию группой преследователей группы жестко скоординированных убегающих при равных возможностях всех участников. Предполагается, что убегающие не покидают пределы выпуклого многогранного множества, терминальные множества - выпуклые компакты и целью группы преследователей является поимка хотя бы одного убегающего. В терминах начальных позиций и параметров игры получены условия разрешимости задачи преследования и задачи уклонения.
Вторая задача посвящена преследованию группой преследователей группы убегающих в предположении, что убегающие используют программные стратегии, а каждый преследователь может поймать не более одного убегающего. Целью группы преследователей является поимка заданного числа убегающих. Терминальные множества выпуклые компакты, множество допустимых управлений произвольный выпуклый компакт. Получены необходимые и достаточные условия разрешимости задачи преследования.
-
Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:
A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, t∈I=[t0,t0+T]. (1)
Целью управления является движение системы по множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.
Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения
A(t,x)ẋ∈F(t,x)+u,
где u - позиционное импульсное управление, и скользящими режимами системы
A(t,x)ẋ∈F(t,x)+B(t,x)ũ(t,x)
с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.
-
В настоящее время в рамках управления воздушным движением крайне важной является задача формирования оптимального безопасного расписания прибытия самолетов в точку слияния воздушных трасс. Безопасность результирующей очереди обеспечивается наличием безопасного временнóго интервала между соседними прибытиями в точку слияния. Изменение момента прибытия может обеспечиваться изменением скорости движения самолета и/или использованием схем, удлиняющих или укорачивающих его траекторию. Оптимальность результирующей очереди рассматривается с точки зрения дополнительных требований: минимизации отклонения назначенных моментов прибытия от номинальных, минимизации количества изменений порядка самолетов в очереди, минимизации расхода топлива и т.д. Минимизируемый критерий оптимальности, отражающий эти требования, часто выбирается как сумма индивидуальных штрафов каждому судну за отклонение назначенного момента прибытия от номинального. Функция индивидуального штрафа почти во всех статьях рассматривается либо как модуль отклонения, либо как функция, похожая на модуль, но с различными наклонами ветвей, что приводит к разному штрафу за задержку и ускорение. В целом, задача может быть разделена на две: одна связана с поиском оптимального порядка прибытия судов, вторая — с выбором оптимальных моментов прибытия при заданном порядке. Последняя подзадача достаточно просто решается, поскольку чаще всего может быть формализована как задача линейного программирования. Однако первая решается значительно сложнее, для ее решения применяются разнообразные методы — от эвристических и генетических процедур до подходов смешанного целочисленного линейного программирования. В статье предлагаются условия на параметры задачи, достаточные для того, чтобы порядок оптимальных моментов прибытия самолетов в точку слияния совпадал с порядком номинальных моментов. Это позволяет исключить первую подзадачу из решения всей задачи.
-
Получены условия разрешимости задач преследования и уклонения в дифференциальной игре со многими участниками, обладающими простым движением.
-
К задаче группового преследования на плоскости, с. 383-387Рассматриваются две задачи простого преследования на плоскости группой преследователей одного убегающего при условии, что все игроки обладают равными возможностями. В первой задаче множеством значений допустимых управлений игроков является невырожденный треугольник. Получены необходимые и достаточные условия на начальные положения игроков для осуществления поимки тремя преследователями. Во второй задаче множеством значений допустимых управлений игроков является выпуклый компакт с непустой внутренностью. В данной задаче получены необходимые и достаточные условия на конструкцию множества значений допустимых управлений игроков, для которого существуют начальные положения трех игроков, убегающего и двух преследователей, из которых происходит поимка.
-
Рассмотрена задача о приливном влиянии на сферическую центральную планету от возмущающего тела (спутника), движущегося по эллиптической орбите. Произведено усреднение приливного потенциала по периоду движения спутника и доказано, что независимо от величины эксцентриситета орбиты сила от возмущающего тела оказывается в среднем чисто радиальная, как если бы орбита спутника была просто круговая.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.