Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается вопрос о существовании рекуррентных и почти рекуррентных сечений многозначных отображений R ∋ t → F(t) ∈ compU с непустыми компактными образами F(t) в полном метрическом пространстве U. На множестве compU вводится метрика Хаусдорфа dist. Рекуррентные и почти рекуррентные многозначные отображения определяются как функции со значениями в метрическом пространстве (compU, dist). Доказано существование рекуррентных (почти рекуррентных) сечений многозначных рекуррентных (соответственно, почти рекуррентных) равномерно абсолютно непрерывных отображений. Рассматриваются также отображения R ∋ t → F(t), образы которых состоят из конечного числа точек (зависящего от t). Доказано, что если такое отображение почти рекуррентно, то у него существует почти рекуррентное сечение. Многозначное рекуррентное отображение, образы F(t) которого для всех t ∈ R состоят не более чем из n точек (где n ∈ N), имеет рекуррентное сечение. Если образы многозначного рекуррентного (почти рекуррентного) отображения t → F(t) при всех t ∈ R состоят из n точек, то все n непрерывных сечений отображения F рекуррентны (почти рекуррентны).
-
Изучается вариационный подход к постановке и решению задачи приближения функций квазиполиномами решениями однородных, автономных линейных разностных или дифференциальных уравнений.
-
Рассматриваются некоторые классы рекуррентных и почти рекуррентных многозначных отображений. Доказано, что такие многозначные отображения имеют рекуррентные и почти рекуррентные (из соответствующих классов) сечения.
-
Рассматривается динамическая система сдвигов в пространстве ℜ непрерывных функций, принимающих значения в полном метрическом пространстве (clos(Rn), ρcl) непустых замкнутых подмножеств в Rn. Расстояние между функциями в этом пространстве определяется с помощью аналога метрики Бебутова в пространстве вещественных функций, определенных и непрерывных на всей числовой оси. Показано, что для компактности замыкания траектории точки в ℜ достаточно, чтобы исходная функция была ограничена и равномерно непрерывна в метрике ρcl. Как следствие, доказано, что замыкание траектории рекуррентного движения или траектории почти периодического движения в ℜ компактно.
-
Пусть $(U,\rho )$ - полное метрическое пространство, ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, и ${\mathcal R} ({\mathbb R},U)$ - пространства (сильно) измеримых функций $f:{\mathbb R}\to U$, преобразования Бохнера ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ которых являются рекуррентными функциями со значениями в метрических пространствах $L^p([-l,l],U)$ и $L^1([-l,l], (U,\rho ^{ \prime }))$, где $l>0$ и $(U,\rho^{ \prime })$ - полное метрическое пространство с метрикой $\rho ^{ \prime }(x,y)=\min\{ 1, \rho (x,y)\} ,$ $x, y\in U.$ Аналогично определяются пространства ${\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ и ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ функций (многозначных отображений) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ со значениями в полном метрическом пространстве $({\mathrm {cl}}\,_{ b}\, U, {\mathrm {dist}})$ непустых замкнутых ограниченных подмножеств метрического пространства $(U,\rho )$ с метрикой Хаусдорфа ${\mathrm {dist}}$ (при определении многозначных отображений $F\in {\mathcal R} ({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ рассматривается также метрика ${\mathrm {dist}} ^{ \prime }(X,Y)=\min\{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$). Доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ (соответственно $f\in {\mathcal R}^p ({\mathbb R},U)$) многозначных отображений $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (соответственно $F\in {\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$), для которых множества почти периодов подчинены множествам почти периодов многозначных отображений $F$. Для функций $g\in {\mathcal R} ({\mathbb R},U)$ приведены условия существования сечений $f\in {\mathcal R} ({\mathbb R},U)$ и $f\in {\mathcal R}^p ({\mathbb R},U),$ для которых $\rho (f(t),g(t))=\rho (g(t),F(t))$ при п.в. $t\in {\mathbb R}$. В предположении, что для любого $\varepsilon >0$ существует относительно плотное множество общих $\varepsilon $-почти периодов функции $g$ и многозначного отображения $F$, также доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ таких, что $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ при п.в. $t\in {\mathbb R}$, где $\eta :[0,+\infty ) \to [0,+\infty )$ - произвольная неубывающая функция, для которой $\eta (0) =0$ и $\eta (\xi )>0$ при всех $\xi >0$, при этом $f\in {\mathcal R}^p ({\mathbb R},U)$ в случае $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ При доказательстве используется равномерная аппроксимация функций $f\in {\mathcal R} ({\mathbb R},U)$ элементарными функциями из пространства ${\mathcal R} ({\mathbb R},U)$ множества почти периодов которых подчинены множествам почти периодов функций $f$.
-
Рассматриваются классы функций f:R→U со значениями в метрическом пространстве (U,ρ), преобразования Бохнера которых являются рекуррентными и почти рекуррентными функциями. Улучшены полученные ранее результаты о равномерной аппроксимации функций из рассматриваемых классов элементарными функциями из этих же классов. Эти результаты находят применение в исследовании вопроса о существовании удовлетворяющих ряду дополнительных условий почти рекуррентных сечений многозначных отображений. В последней части работы доказан вариант теоремы Лузина для рекуррентных функций.
-
Рекуррентные соотношения для сечений производящего ряда решения многомерного разностного уравнения, с. 414-423В данной работе изучены сечения производящего ряда для решений линейного многомерного разностного уравнения с постоянными коэффициентами и найдены рекуррентные соотношения, связывающие такие сечения. Как следствие, доказан многомерный аналог теоремы Муавра о рациональности сечений производящего ряда в зависимости от вида начальных данных задачи Коши для многомерного разностного уравнения. Для задач о числе путей на целочисленной решетке показано, что при подходящем выборе шагов сечения их производящего ряда представляют известные последовательности многочленов (Фибоначчи, Пелля и др.).
-
В пространстве $\mathbb R^k$ $(k \geqslant 2)$ рассматривается нестационарная дифференциальная игра (обобщенный пример Л.С. Понтрягина) с $n$ преследователями и одним убегающим при одинаковых динамических и инерционных возможностях всех игроков, описываемая системой вида
$$Lz_{i}=z_{i}^{(l)}+a_{1}(t)z_{i}^{(l-1)}+ \dots +a_{l}(t)z_{i} =u_{i}-v, \quad u_{i},v\in V,$$
$$z_{i}^{(s)}(t_0) = z_{is}^0,\quad i=1,2, \ldots, n,\ s=0,1, \ldots, l-1.$$
Множество значений допустимых управлений игроков $V$ - строго выпуклый компакт с гладкой границей, $a_{1}(t),\dots, a_{l}(t)$ - непрерывные на $[t_0, \infty)$ функции, терминальные множества - начало координат. Преследователи используют квазистратегии. Предполагается, что функции $\xi_{i}(t)$, являющиеся решением задачи Коши
$$Lz_{i}=0,\quad z_{i}^{(s)}(t_0) = z_{is}^0,$$
являются рекуррентными. Приводятся свойства рекуррентных функций. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи преследования. Доказательство проводится с использованием метода разрешающих функций. Приведен пример, иллюстрирующий полученные условия.
-
Если случайное блуждание на бесконечном счетном пространстве состояний обратимо, то известны необходимые и достаточные условия для того, чтобы это блуждание было рекуррентным. Если отбросить условие обратимости, то, используя дискретные решения Дирихле и выметание (понятия, известные из теории потенциала), можно частично установить некоторые из приведенных выше результатов, касающихся повторяемости и переходности случайного блуждания.
-
Рассматриваются искусственные нейроны, чьи весовые коэффициенты будут изменяться по специальному закону, основанному на интегрированном в их модели обратном распространении. Для этого коэффициенты погрешности обратного распространения вводятся в явном виде во все модели нейронов и осуществляется передача их значений вдоль межнейронных связей. В дополнение к этому вводится специальный тип нейронов с эталонными входами, которые будут выступать в качестве основного источника первичной оценки погрешности для всей нейронной сети. В последнюю очередь вводится контрольный сигнал для запуска обучения, который будет управлять процессом передачи коэффициентов погрешности и корректировкой весов нейронов. Для рекуррентных нейронных сетей демонстрируется как провести интеграцию обратного распространения во времени в их формализм с помощью стековой памяти для внешних входов нейронов. Дополнительно к этому рассматриваются примеры как формализовать в рамках данного подхода такие популярные нейронные сети, как сети долгой кратковременной памяти, сети радиально-базисных функций, многослойные перцептроны и сверточные нейронные сети. Основным практическим следствием данного подхода является возможность описания нейронных сетей с перестраиваемыми связями на основе интегрированного алгоритма обратного распространения.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.