Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:
A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, t∈I=[t0,t0+T]. (1)
Целью управления является движение системы по множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.
Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения
A(t,x)ẋ∈F(t,x)+u,
где u - позиционное импульсное управление, и скользящими режимами системы
A(t,x)ẋ∈F(t,x)+B(t,x)ũ(t,x)
с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.
-
В статье рассмотрены основные принципы постановок задач в механике твердого тела при наличии связей (с сухим трением и без). Основное внимание уделено предыстории начальных условий задачи, которая должна быть корректно определена таким образом, чтобы не требовалось введения дополнительных гипотез и допущений, выводящих исследование за рамки динамики твердого тела без ударов. Тогда динамика движения (и/или равновесия) твердых тел может быть описана однозначно и без каких-либо парадоксальных ситуаций (парадоксов Пэнлеве). Эта методика иллюстрируется на трех известных задачах механики: опирание твердого тела на одну точку при наличии сухого трения, движение стержня с ползунами в направляющих с сухим трением, опирание твердого тела на две точки с сухим трением («скамейка»).
-
Предложен новый итерационный метод решения статических контактных задач двух деформируемых тел, основанный на поочередном решении задачи одностороннего контакта для первого тела и задачи линейной теории упругости с естественными граничными условиями для второго тела. Выполнение условий закона трения Кулона достигнуто за счет коррекции касательных узловых сил в зоне скольжения и задания кинематических граничных условий в зоне сцепления на контактной границе первого тела. Постепенное выравнивание контактных нагрузок на взаимодействующих поверхностях осуществляется в процессе решения задачи линейной теории упругости для второго тела. Преимущества метода продемонстрированы на решении ряда модельных примеров, включая односторонний контакт линейно-упругой пластины с твердым основанием, двухсторонний контакт вдавливания деформируемого блока в основание, задачу Герца о контакте двух деформируемых цилиндров и др. Разработанный метод применим для решения контактных задач с плоскими и криволинейными границами взаимодействия.
-
Пошаговый контактный алгоритм на основе метода декомпозиции Шварца для деформируемых тел, с. 396-413Рассматривается построение и исследование неявных численных схем интегрирования задач динамического контактного взаимодействия двух контактирующих трехмерных тел без трения в рамках альтернирующего метода Шварца. Приводятся результаты тестирования контактного алгоритма декомпозиции Шварца с использованием схемы HTT-$\alpha$ в комбинации с методом перераспределения массы на границе области контакта.
-
В работе представлены результаты расчетного исследования локальной структуры восходящего газожидкостного потока в вертикальной трубе. Математическая модель основана на использовании двухжидкостного эйлерова подхода с учетом обратного влияния пузырьков на осредненные характеристики и турбулентность несущей фазы. Турбулентная кинетическая энергия жидкости рассчитывается с применением двухпараметрической изотропной модели турбулентности $k - \varepsilon$, модифицированной для двухфазных сред. Для описания динамики распределения пузырьков по размерам используются уравнения сохранения количества частиц для отдельных групп пузырьков с различными диаметрами для каждой фракции с учетом процессов дробления и коалесценции. Численно исследовано влияние изменения степени дисперсности газовой фазы, объемного расходного газосодержания, скорости дисперсной фазы на локальную структуру и поверхностное трение в двухфазном потоке. Сравнение результатов моделирования с экспериментальными данными показало, что разработанный подход позволяет адекватно описывать турбулентные газожидкостные течения в широком диапазоне изменения газосодержания и начальных размеров пузырьков.
-
Обсуждается классическая задача о движении тяжелого симметричного твердого тела (волчка) с неподвижной точкой на горизонтальной плоскости. Ввиду одностороннего характера контакта, при определенных условиях возможны отрывы (подскоки) волчка. Известно два сценария отрывов, связанных с переменой знака нормальной реакции либо знака нормального ускорения, причем несовпадение указанных условий приводит к парадоксам. Для выяснения природы парадоксов подробно изучен пример маятника (стержня) с учетом ограниченности реального коэффициента трения. Показано, что в случае парадокса первого типа (невозможен ни отрыв, ни продолжение контакта) тело начинает скользить по опоре. В случае парадокса второго типа (возможен как отрыв, так и сохранение контакта) контакт сохраняется вплоть до перемены знака нормальной реакции, а затем нормальное ускорение при отрыве отлично от нуля.
-
Рассматривается задача о скольжении однородного прямого цилиндра произвольной формы (шайбы) по горизонтальной плоскости под действием сил сухого трения. Пятно контакта цилиндра с плоскостью совпадает с его основанием. Одной из центральных гипотез в работе является выбор математической модели взаимодействия малого элемента поверхности шайбы с плоскостью. Предполагается, что данное явление описывается законом сухого трения Амонтона–Кулона. В данной работе основное внимание уделено качественному анализу уравнений движения системы, который позволит описать динамику при малых значениях кинетической энергии системы (финальную динамику). Сформулированы и доказаны качественные свойства динамики произвольных шайб. Приведены примеры, показывающие различие финальной динамики шайб, опирающихся на шероховатую плоскость круглым основанием, центрально-симметричным и произвольной формы.
-
Рассматривается шар Чаплыгина на плоскости, на который действует сила трения, удовлетворяющая условию: (F,u)<0 при u≠0 и F=0 при u=0, где u - скорость проскальзывания шара. Контакт с опорной плоскостью предполагается точечным (иными словами, отсутствуют пятно контакта и момент трения верчения). Основной задачей работы является нахождение множества возможных стационарных (финальных) движений и определение типов их устойчивости.
В работе показано, что стационарных движений возможно ровно три; все они представляют собой равномерные и прямолинейные качения шара по прямой без проскальзывания, при которых он вращается вокруг одной из главных осей тензора инерции. При этом вращение вокруг оси наибольшего момента инерции устойчиво, вокруг среднего и наименьшего неустойчиво.
-
Рассмотрена динамика вращения твердого тела (ротатора) вокруг неглавной оси Oz, проходящей через его центр масс, с учетом диссипативных моментов: сухого трения Mfr, возникающего в опорах из-за поперечных динамических реакций, и квадратичного по угловой скорости ω аэродинамического сопротивления MR=-c|ω|ω. Показано, что уравнение динамики и вытекающие из него кинетики вращения тела качественно различны в общем и частном случаях инерционных и диссипативных параметров: осевого момента инерции Jzz, коэффициентов c и α=Mfr/√ε2+ω4 (ε - угловое ускорение). В частном случае равенства Jzz=c=α обнаружено отсутствие физически возможного решения для вращения по инерции в рамках динамики абсолютно твердого тела. Парадокс разрешается через нормализующее причинно-следственные связи введение запаздывающих величин ε(t-τ) и ω(t-τ), определяющих в согласии с принципом Даламбера поперечные реакции в опорах оси Mx,y(t-τ) и пару Mfr(t-τ). Последняя же определяла темп потери кинетического момента dKz(t)/dt в момент времени t. Кинетика вращения при этом имеет импульсивный характер так называемого фрикционно-аэродинамического удара. Также путем численного интегрирования продемонстрирована необычная угловая кинетика φ(t) затухающих колебаний ротатора под действием упругого момента Me=-κφ, характеризующаяся наличием двух фаз: кратковременного стартового участка, зависящего от начальных условий, затем резко переходящего в фазу почти синусоидальных колебаний с медленно убывающей амплитудой.
-
В работе рассматриваются результаты решения задачи стационарного течения вязкой несжимаемой жидкости в плоском канале с обратным уступом и прогреваемой нижней стенкой в широком диапазоне числа Рейнольдса $100\leqslant \text{Re}\leqslant 1000$ и параметра расширения потока $1.11 \leqslant ER \leqslant 10$. Исследование выполнено путем численного интегрирования системы двумерных уравнений Навье-Стокса в переменных «скорость-давление» на равномерных сетках с шагом 1/300. Достоверность полученных результатов подтверждается их сравнением с литературными данными. Приводятся подробные картины течения и перегрева жидкости в зависимости от двух основных параметров задачи: $\text{Re}$ и $ER$. Показывается, что с одновременным ростом параметров $\text{Re}$ и $ER$ существенно усложняется структура течения - увеличиваются количество вихрей и их размеры вплоть до образования вихря за уступом с двумя центрами вращения. Также показывается, что характерная высота зоны прогрева течения слабо зависит от $\text{Re}$ и $ER$ и в конечном счете ближе к выходу из канала составляет приблизительно половину его высоты. Для всех центров вихрей определяются их основные характеристики: координаты, экстремумы функции тока, завихренности. Анализируется сложное немонотонное поведение профилей коэффициентов трения, сопротивления и теплоотдачи (числа Нуссельта) по длине канала. Показывается, что эти коэффициенты в одинаковой степени сильно зависят как от числа Рейнольдса, так и от параметра расширения канала, достигая своих максимальных значений при максимальных значениях $\text{Re}$ и $ER$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.