Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'уравнение Лагранжа':
Найдено статей: 10
  1. Исследуется задача мультипликативного управления для стационарной диффузионно-дрейфовой модели зарядки полярного диэлектрика. Роль управления играет старший коэффициент в уравнении модели, имеющий смысл коэффициента диффузии электронов. Глобальная разрешимость краевой задачи и локальная единственность ее решения, а также разрешимость экстремальной задачи доказана в предыдущих работах авторов. В настоящей работе для задачи управления выводится система оптимальности и устанавливаются условия локальной регулярности множителя Лагранжа. На основе анализа данной системы доказывается локальная единственность решения задачи мультипликативного управления для конкретных функционалов качества.

  2. Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.

  3. Для задачи оптимального управления системой обыкновенных дифференциальных уравнений с поточечным фазовым ограничением типа равенства и конечным числом функциональных ограничений типа равенства и неравенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собою регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации.

  4. Для задачи оптимального управления линейным параболическим уравнением с распределенным, начальным и граничным управлениями и с операторным полуфазовым ограничением типа равенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собой регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации. Приводятся результаты модельных расчетов при решении конкретной задачи оптимального управления, иллюстрирующих работу алгоритма, основанного на регляризованном итерационном принципе максимума Понтрягина. В качестве конкретной оптимизационной задачи рассмотрена задача поиска минимальной по норме тройки управлений при операторном ограничении-равенстве в финальный момент времени, или, другими словами, обратная задача финального наблюдения по поиску ее нормального решения.

  5. Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:

    A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, tI=[t0,t0+T]. (1)

    Целью управления является  движение системы по  множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием  позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности  множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.

    Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения

    A(t,x)F(t,x)+u,

    где u - позиционное импульсное управление, и скользящими режимами системы

    A(t,x)F(t,x)+B(t,x)ũ(t,x)

    с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы  более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.

  6. В данной работе исследуется качение сферического волчка с осесимметричным распределением масс по гладкой горизонтальной плоскости, совершающей периодические вертикальные колебания. Для рассматриваемой системы получены уравнения движения и законы сохранения. Показано, что система допускает два положения равновесия, соответствующих равномерным вращениям волчка относительно вертикально расположенной оси симметрии. Положение равновесия устойчиво, когда центр масс расположен ниже геометрического центра и неустойчиво, если центр масс расположен выше него. Проведена редукция уравнений движения к системе с полутора степенями свободы. Рассматриваемая редуцированная система представлена в виде малого возмущения задачи о движении волчка Лагранжа. При помощи метода Мельникова показано, что устойчивая и неустойчивая ветви сепаратрисы трансверсально пересекаются между собой, что говорит о неинтегрируемости рассматриваемой задачи. Приведены результаты компьютерного моделирования динамики волчка вблизи неустойчивого положения равновесия.

  7. В статье рассматривается твердотельный волновой гироскоп - прибор, измеряющий проекцию угловой скорости на ось прибора. Основным элементом прибора является резонатор, в котором реализуется эффект инертности стоячих волн. Из-за различных дефектов материалов и технологий изготовления появляется взаимодействие основных рабочих колебаний и побочных деформаций в месте крепления, из-за чего появляются конструкционное демпфирование и, как следствие, дрейф стоячей волны. Предлагается исследовать вопросы конструкционного демпфирования в твердотельном волновом гироскопе и появления дрейфа волны с помощью модели в виде механической системы. В механической системе центральная масса моделирует крепежную ножку резонатора. Выводится математическая модель с помощью подхода Лагранжа. Механическая система описывается в декартовых координатах в общем виде для $N+1$ массы. Выбирается более удобная неинерциальная система координат, вращающаяся с некоторой угловой скоростью. Приводятся выкладки для получения математической модели в виде системы дифференциальных уравнений. Анализируется полученная математическая модель. Описываются дальнейшие пути исследования конструкционного демпфирования и дрейфа.

  8. Рассматривается регуляризация классических условий оптимальности (КУО) — принципа Лагранжа и принципа максимума Понтрягина — в выпуклой задаче оптимального управлении с функциональными ограничениями типа равенства и неравенства. Управляемая система задается линейным функционально-операторным уравнением второго рода общего вида в пространстве $L^m_2$, основной оператор правой части уравнения предполагается квазинильпотентным. Целевой функционал задачи является сильно выпуклым. Получение регуляризованных КУО в итерационной форме основано на использовании метода итеративной двойственной регуляризации. Основное предназначение получаемых в работе регуляризованных принципа Лагранжа и принципа максимума Понтрягина в итерационной форме — устойчивое генерирование минимизирующих приближенных решений в смысле Дж. Варги. Регуляризованные КУО в итерационной форме формулируются как теоремы существования в исходной задаче минимизирующих приближенных решений. Они «преодолевают» свойства некорректности КУО и являются регуляризирующими алгоритмами для решения оптимизационных задач. В качестве иллюстративного примера рассматривается задача оптимального управления, связанная с гиперболической системой дифференциальных уравнений первого порядка.

  9. Рассматривается качение неуравновешенного динамически симметричного шара по плоскости без проскальзывания в присутствии внешнего магнитного поля. Предполагается, что шар может полностью или частично состоять из диэлектрического, ферромагнитного или сверхпроводящего материалов. Согласно существующей феноменологической теории в этом случае при изучении динами шара требуется учитывать момент силы Лоренца, момент Барнетта-Лондона и момент Эйнштейна-де Гааза. В рамках данной математической модели нами получены условия существования интегралов движения, которые позволяют свести интегрирование уравнений движения к квадратуре аналогичной квадратуре Лагранжа для тяжелого твердого тела.

  10. Проективно-двойственные переменные использованы для описания геометрии движения точечной массы в движущейся системе наблюдения, связанной с воздушной средой, характеризующейся квадратичным по скорости законом для лобового сопротивления. Через обратный переход к неподвижной системе и обратное преобразование Лагранжа выведены степенные формулы для абсолютных координат и времени: $x(b)$, $y(b)$, $z(b)$ и $t(b)$, $b = \rm{tg}\, \Theta$ — наклон относительной траектории, в области малых углов вылета $\Theta_0 < 15^{\circ}$. Выражения используют ключевые параметры движения: $b_0 = \rm{tg}\, \Theta_0$, $\Theta_0$ — угол вылета, $R_a$ — вершинный радиус кривизны траектории и $\beta_0$ — отношение квадрата разворотной скорости к квадрату предельной скорости. Малое отклонение полученных аппроксимаций от классических интегральных выражений обусловлено эффектом автоподстройки, заключающемся в уменьшении параметра $\beta_0$ с ростом начального наклона траектории $b_0$. Для стартовых сил сопротивления, не превышавших $1.15$ $\rm{m\,g}$, и скоростей ветра, меньших 40 м/с, и в вышеуказанном интервале углов вылета абсолютные погрешности составляли величины порядка дециметров, а относительные не превышали десятых долей процента. Ввиду того, что численная реализация формул «почти» алгебраическая, они могут быть внедрены в простейшие баллистические калькуляторы как используемые для стрельбы в условиях ветра, так и с движущегося орудия/по движущейся мишени.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref