Текущий выпуск Выпуск 3, 2025 Том 35
Результыты поиска по 'устойчивые периодические точки':
Найдено статей: 11
  1. На основе модели Колмогорова «хищник–жертва» предложена система для описания динамики трех видов: жертвы $x(t)$, потребляющего её хищника $y(t)$ и суперхищника $z(t)$, питающегося обоими видами. Учтена нелинейная зависимость от численности жертв коэффициентов роста всех трех видов, правая часть системы дифференциальных уравнений первого порядка содержит 10 вещественных коэффициентов. Аналитически найдены условия на параметры суперхищника, при которых система является косимметричной и возникает однопараметрическое семейство решений дифференциальных уравнений. Мультистабильность реализуется в виде семейств равновесий и периодических решений (предельных циклов). Каждое решение может быть получено из начальных данных, принадлежащих соответствующему бассейну. Наличие нуля в спектре устойчивости равновесий и близких к единице двух мультипликаторов для предельных циклов подтверждает теоретические выводы о существовании континуума решений. При нарушении соотношений на параметры системы происходит разрушение семейств решений и возникает конечное число изолированных равновесий и предельных циклов. В такой ситуации динамический процесс установления равновесия или выхода на изолированный предельный цикл может занимать много времени. При этом динамика происходит в окрестности семейства, исчезнувшего в результате разрушения косимметрии, то есть сохраняется память системы о семействе.

  2. В работе рассматривается краевая задача для нелинейного эволюционного уравнения в частных производных, приведенная в перенормированном виде. Данная краевая задача возникает в механике роторных систем и описывает поперечные колебания вращающегося ротора постоянного сечения из вязкоупругого материала, концы которого шарнирно закреплены. Изучен вопрос об устойчивости нулевого состояния равновесия, найдено критическое значение скорости вращения ротора, при превышении которого возникают незатухающие колебания. Найдены точные решения изучаемой краевой задачи в виде одномодовых по пространственной переменной и периодической по времени функций. Выведены условия устойчивости таких решений, а также в ряде случаев дан анализ условий устойчивости. В работе показано отсутствие многомодовых периодических по времени решений. Проанализированы базовые, но важные с прикладной точки зрения частные случаи данной нелинейной краевой задачи. Все результаты анализа нелинейной краевой задачи носят аналитический характер. Их вывод опирается на качественную теорию бесконечномерных динамических систем.

  3. Рассматриваются Cr-гладкие (r≥1) диффеоморфизмы многомерного пространства в себя с гиперболической неподвижной точкой и нетрансверсальной гомоклинической к ней точкой. Из работ Ш. Ньюхауса, Л.П. Шильникова, Б.Ф. Иванова и других авторов следует, что при определенном способе касания устойчивого и неустойчивого многообразий окрестность гомоклинической точки может содержать счетное множество устойчивых периодических точек, но по крайней мере один из характеристических показателей у таких точек стремится к нулю с ростом периода. В предлагаемой работе показано, что при определенных условиях, наложенных на характер касания устойчивого и неустойчивого многообразий, в окрестности нетрансверсальной гомоклинической точки лежит бесконечное множество устойчивых периодических точек, характеристические показатели которых отделены от нуля.

  4. Рассматриваются процессы образования периодических структур при ионной бомбардировке. В качестве математической модели выбрано двумерное обобщение уравнения Курамото–Сивашинского. Аналогичное уравнение было получено и в работе Бредли–Харпера. С математической точки зрения изрезанный рельеф в результате ионной бомбардировки может быть объясним как локальные бифуркации плоского профиля при смене устойчивости.

    Для описания такого рельефа получены асимптотические формулы. Для исследования нелинейной краевой задачи использован метод теории бифуркаций для задач с бесконечномерным фазовым пространством. В частности, использован метод построения нормальных форм, ведущий свое начало от алгоритма Крылова–Боголюбова.

  5. Исследуются движения динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите в окрестности его стационарного вращения (цилиндрической прецессии). Рассматриваются значения параметров, для которых в предельном случае круговой орбиты одна из частот малых линейных колебаний равна единице, а другая нулю, и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен двум, а также малая окрестность этой резонансной точки в трехмерном пространстве параметров. Построены резонансные периодические движения спутника, аналитические по дробным степеням малого параметра (эксцентриситета орбиты центра масс спутника), проведен строгий нелинейный анализ их устойчивости. Методами КАМ-теории описаны двух- и трехчастотные условно-периодические движения спутника, с частотами разного порядка по малому параметру. Обсуждается ряд общетеоретических вопросов, касающихся рассматриваемого кратного параметрического резонанса в близких к автономным, периодических по времени гамильтоновых системах с двумя степенями свободы. Построено несколько качественно различных вариантов областей параметрического резонанса. Показано, что в общем случае характер нелинейных резонансных колебаний системы определяется системой первого приближения по малому параметру.

  6. Рассматривается плоская ограниченная эллиптическая задача трех тел. Изучаются движения, близкие к треугольным точкам либрации. Предполагается, что параметры задачи (эксцентриситет орбиты основных притягивающих тел и отношение их масс) лежат внутри области устойчивости в первом приближении точек либрации. Величина эксцентриситета считается малой. С точностью до второй степени эксцентриситета включительно получено аналитическое представление для линейного, периодического по истинной аномалии, канонического преобразования, приводящего функцию Гамильтона линеаризованных уравнений возмущенного движения в окрестности точек либрации к их вещественной нормальной форме. Эта форма соответствует двум, не связанным один с другим, гармоническим осцилляторам, частоты которых зависят от параметров задачи. При построении нормализующего канонического преобразования используется метод Депри-Хори теории возмущений гамильтоновых систем. Его реализация в конкретной рассматриваемой задаче существенно опирается на компьютерные системы аналитических вычислений.

  7. Рассматриваются движения неавтономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Предполагается, что в системе реализуется кратный (двойной или тройной) резонанс четвертого порядка. Дан перечень всех возможных наборов характеристических показателей, соответствующих указанным резонансным случаям. Получены пять качественно различных приближенных (модельных) гамильтонианов, отвечающих данным наборам. Для всех рассматриваемых случаев кратных резонансов получены достаточные условия формальной устойчивости тривиального равновесия полной системы, записанные в виде ограничений на коэффициенты форм четвертой степени в нормализованных гамильтонианах возмущенного движения, дана графическая интерпретация этих условий. Показано, что полученные области формальной устойчивости содержатся внутри областей устойчивости каждого имеющегося сильного резонанса, рассматриваемого по отдельности, а резонансные коэффициенты, отвечающие слабым резонансам, должны принимать значения из ограниченного диапазона. Рассмотрены некоторые вопросы о неустойчивости тривиального равновесия системы в случаях кратных резонансов четвертого порядка. Найденные условия формальной устойчивости проверены в точках кратных резонансов четвертого порядка в задаче об устойчивости цилиндрической прецессии динамически симметричного спутника-пластинки в центральном ньютоновском гравитационном поле на эллиптической орбите произвольного эксцентриситета.

  8. Рассматривается движение близкой к автономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия. Предполагается, что система зависит от трех параметров, один из которых мал, и при его нулевом значении система автономна. Пусть в автономном случае для некоторого набора двух других параметров обе частоты малых линейных колебаний системы в окрестности равновесия равны нулю и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен трем, двум или единице. Исследуется структура областей устойчивости и неустойчивости тривиального равновесия системы в окрестности резонансной точки трехмерного пространства параметров, изучается вопрос о существовании, числе и устойчивости (в линейном приближении) периодических движений системы, аналитических по целым или дробным степеням малого параметра. В качестве приложения построены периодические движения динамически симметричного спутника (твердого тела) относительно центра масс в окрестности его стационарного вращения (цилиндрической прецессии) на слабоэллиптической орбите в рассматриваемом случае двух нулевых частот, доказана их неустойчивость.

  9. В работе исследуются движения системы, состоящей из двух шарнирно соединенных тонких однородных стержней, вращающихся вокруг горизонтальных осей. Предполагается, что точка подвеса системы, совпадающая с концом одного из стержней, совершает горизонтальные высокочастотные гармонические колебания малой амплитуды.

    Проведено исследование устойчивости четырех положений относительного равновесия на вертикали. Показано, что устойчивым может быть только нижнее ("висящее") положение относительного равновесия. Для системы, состоящей из двух одинаковых стержней, вопрос об устойчивости этого равновесия решен в нелинейной постановке. Также для этой же системы изучен вопрос о существовании, бифуркациях и устойчивости высокочастотных периодических движений малой амплитуды, отличных от положений относительного равновесия на вертикали.

  10. Исследована устойчивость катящейся по горизонтальной плоскости сферической оболочки с гироскопом Лагранжа внутри. Проведен линейный анализ устойчивости для верхнего и нижнего положений волчка, построена бифуркационная диаграмма системы, получены и проанализированы траектории точки контакта при различных значениях интегралов движения.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref