Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'фазовые ограничения':
Найдено статей: 23
  1. Рассматривается дифференциальная игра группы преследователей и одного убегающего при равных динамических возможностях всех участников. Получены необходимые и достаточные условия поимки в случае, когда убегающий стеснен фазовыми ограничениями.

  2. Рассматривается задача простого преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Получены достаточные условия поимки.

  3. Кандоба И.Н., Козьмин И.В., Новиков Д.А.
    Численное исследование одной нелинейной задачи быстродействия, с. 429-444

    Обсуждаются вопросы построения допустимых управлений в одной задаче оптимального управления нелинейной динамической системой при наличии ограничений на ее текущее фазовое состояние. Рассматриваемая динамическая система описывает управляемое движение ракеты-носителя от точки старта до момента ее выхода на заданную околоземную эллиптическую орбиту. Задача заключается в построении программного управления, которое обеспечивает выведение ракетой-носителем на орбиту полезной нагрузки максимальной массы и выполнение дополнительных ограничений на текущее фазовое состояние системы. Дополнительные ограничения обусловлены необходимостью учитывать величины скоростного напора, углов атаки и скольжения при движении ракеты в плотных слоях атмосферы и осуществлять падение ее отделяемых частей в заданные районы на земной поверхности. Для ракет-носителей ряда классов такая задача равносильна нелинейной задаче быстродействия с фазовыми ограничениями. Предлагаются и численно исследуются два алгоритма построения в этой задаче допустимых управлений, обеспечивающих выполнение указанных дополнительных фазовых ограничений. Методологическую основу одного алгоритма составляет применение некоторого прогнозирующего управления, которое априори строится в задаче быстродействия без учета в ней дополнительных ограничений, а другого - использование специальных режимов управления. Приводятся результаты численного моделирования.

  4. Рассматривается линейная задача преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Движение каждого участника имеет вид $\dot z+a(t)z=w.$ Геометрические ограничения на управления - строго выпуклый компакт с гладкой границей, терминальные множества - начало координат. Предполагается, что убегающие в процессе игры не покидают пределы выпуклого конуса. Целью преследователей является поимка двух убегающих, цель группы убегающих противоположна. Говорят, что в задаче преследования происходит поимка, если существуют два преследователя, из заданной группы преследователей, которые ловят убегающих, при этом моменты поимки могут не совпадать. В терминах начальных позиций получены достаточные условия поимки двух убегающих. Приведены примеры, иллюстрирующие полученные результаты.

  5. Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.

  6. Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.

  7. Для задачи оптимального управления системой обыкновенных дифференциальных уравнений с поточечным фазовым ограничением типа равенства и конечным числом функциональных ограничений типа равенства и неравенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собою регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации.

  8. Работа посвящена развитию полиэдральных методов решения двух задач управления линейными многошаговыми системами с неопределенностями при фазовых ограничениях — задач терминального сближения и уклонения. Они возникают в системах с двумя управлениями, где цель одного — привести траекторию на заданное конечное множество в заданный момент времени, не нарушая фазовых ограничений, цель другого — противоположна. Предполагается, что конечное множество — параллелепипед, управления стеснены параллелотопозначными ограничениями, фазовые ограничения заданы в виде полос. Представлены методы решения обеих задач с использованием полиэдральных (параллелотопо- или параллелепипедо-значных) трубок. Методы решения задачи сближения предложены автором ранее, но здесь исследуются их дополнительные свойства. В частности, для случая без фазовых ограничений найдены гарантированные оценки для траектории, обеспечивающие ее нахождение внутри трубки. Даны удобные достаточные условия, гарантирующие получение невырожденных сечений в процессе вычислений. Для задачи уклонения сначала рассматривается общая схема решения, а затем предлагаются полиэдральные методы. Приводятся и сравниваются целые параметрические семейства внешних и внутренних полиэдральных оценок трубок разрешимости обеих задач. Приведен иллюстрирующий пример.

  9. Рассматриваются некоторые задачи теории оптимального фуражирования, а именно, задачи выбора популяцией хищника участка, пригодного для питания, и нахождения условий ухода из него. Динамика взаимодействия хищника и жертвы задается системой Лотки-Вольтерры, в которой учтена внутривидовая конкуренция особей жертвы и возможность миграции особей хищника и жертвы. В процессах взаимодействия и миграции участвуют некоторые доли популяций. Решается задача нахождения оптимальных с точки зрения равновесия по Нэшу долей. При этом получено разбиение фазового пространства системы на области с различным поведением популяций. Исследуются оптимальные траектории соответствующей динамической системы с переменной структурой, их поведение на границах разбиения фазового пространства. Найдены положения равновесия и доказана их глобальная устойчивость при определенных ограничениях на параметры системы. В одном из случаев взаимоотношения между параметрами исследование качественного поведения оптимальных траекторий приводит к задаче о существовании предельных циклов. При этом дана оценка соответствующей области притяжения равновесия.

  10. Рассматривается задача простого преследования в классе импульсных стратегий группой преследователей. В первой части рассматривается импульсная стратегия убегающего с фазовыми ограничениями. Предполагается, что убегающий не покидает выпуклого многогранного множества. В работе получены достаточные условия поимки одним из преследователей убегающего. Во второй части рассматриваются импульсные стратегии преследователей. Сформулированы достаточные условия поимки одним из преследователей убегающего, не покидающего выпуклого многогранного множества.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref