Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'фильтры':
Найдено статей: 8
  1. Получена оценка сверху для показателей Ляпунова возмущенной абстрактной линейной системы.

  2. Рассматриваются конструкции, связанные с представлением свободных $\sigma$-мультипликативных ультрафильтров широко понимаемых измеримых пространств. В основе построений находятся представления, связанные с применением открытых ультрафильтров в случаях кофинитной и косчетной топологий. Такие ультрафильтры сохраняются (как максимальные фильтры) при замене топологий соответственно алгеброй и $\sigma$-алгеброй, порожденных упомянутыми топологиями. В (основном) случае косчетной топологии устанавливается единственность $\sigma$-мультипликативного свободного ультрафильтра, составленного из непустых открытых множеств. Показано, что данное свойство сохраняется для $\sigma$-алгебр, содержащих косчетную топологию. Указаны две топологии пространства ограниченных конечно-аддитивных борелевских мер, для которых ультрафильтр непустых открытых множеств определяет одноэлементный нарост секвенциально замкнутого множества мер Дирака, возникающий при построении замыкания.

  3. Исследуются свойства ультрафильтров (у/ф) и максимальных сцепленных систем (МСС) на широко понимаемом измеримом пространстве (ИП), а также некоторые представления сцепленных (не обязательно максимальных) систем и фильтров на упомянутом ИП. Исследуются условия, обеспечивающие максимальность сцепленных семейств (систем), а также естественные представления для битопологических пространств (БТП), точками которых являются у/ф и МСС. Изучаются оснащения множеств сцепленных семейств и фильтров, отвечающие схемам Волмэна и Стоуна, а также связь данных оснащений (топологиями) с аналогичными оснащениями множеств у/ф и МСС, приводящими к вышеупомянутым БТП. Исследуются свойства определяемых естественным образом произведений сцепленных семейств и МСС на двух (широко понимаемых) ИП. Показано, что МСС на произведении $\pi$-систем (то есть на семействе «измеримых» прямоугольников) исчерпываются произведениями соответствующих МСС на исходных пространствах.

  4. Рассматривается конструкция расширения абстрактной задачи о достижимости, реализуемая с использованием компакта Стоуна (пространство ультрафильтров алгебры множеств в традиционном оснащении). Исследуются вопросы, связанные с построением множеств притяжения; последние определяют возможности в части достижимости желаемых состояний в топологическом пространстве при использовании асимптотических аналогов обычных решений. Предполагаются заданными ограничения асимптотического характера, которые, в частности, могут возникать при ослаблении стандартных ограничений, используемых в задачах управления (естественным прототипом исследуемой абстрактной задачи может служить задача о построении асимптотического аналога области достижимости управляемой системы при исчезающе малом ослаблении тех или иных ограничений на выбор программного управления). Используя естественную модификацию подхода Дж. Варги, можно ввести наряду с точными так называемые приближенные решения в виде последовательностей обычных решений, соблюдающих с "нарастающей точностью" условия, составляющие в своей совокупности "асимптотические ограничения". В ряде случаев таких (секвенциальных) приближенных решений оказывается недостаточно. Требуются направленности или фильтры. Последние используются в настоящей работе в качестве основного типа (асимптотических по существу) решений при построении множеств притяжения в задачах о достижимости с ограничениями асимптотического характера; более того, в этих построениях удается ограничиться использованием ультрафильтров. Для одного частного случая на этой основе установлена конкретная структура множества притяжения.

  5. Величину коэффициента фильтрации принято определять эмпирически в силу обусловленности его физическими и химическими свойствами среды и фильтрующейся жидкости. Однако, полученные экспериментальные данные могут существенно варьироваться в зависимости от приложенных нагрузок. В работе выдвигается новая гипотеза о линейной зависимости коэффициента фильтрации среды от первого инварианта тензора напряжений, возникших в области вследствие гидравлического напора на границе. В рамках этой гипотезы исследуется изменение коэффициента фильтрации области при плоской деформации. Возникновение на границе гидравлического напора ведет к возникновению в среде упругих возмущений. Так как скорость последних много больше скорости фильтрации жидкости, то изменение напряженного состояния области приведет к изменению порового пространства, а следовательно, и к изменению коэффициента фильтрации. Таким образом, исходная задача сводится к решению сначала классической задачи теории упругости, а именно к решению краевой задачи для функции Эри, а затем к определению непосредственно коэффициента фильтрации как решения краевой задачи для гармонического уравнения. В работе построен численный алгоритм решения гармонического и бигармонического уравнений, основанный на методе граничных элементов, который, в конечном счете, сводит исходную задачу к системе линейных алгебраических уравнений. Как показали численные результаты исследований, изменение коэффициента фильтрации некоторых материалов при рабочих нагрузках достигает в некоторых точках области 20 процентов. Особенно актуальны эти результаты при использовании труб, шлангов, водонапорных рукавов из различных полимерных материалов, стеклопластика, а также при эксплуатации гидротехнических и очистных сооружений. Изменение фильтрующей способности среды при малых упругих деформациях делает возможной при соответствующих давлениях фильтрацию даже в тех средах, которые обычно считаются для жидкости непроницаемыми. В работе приведены результаты численных экспериментов по исследованию коэффициента фильтрации полиуретана (гибкий поливочный шланг) и бутилкаучука. Построены графики искомых механических параметров. Расчеты выполнялись в программном пакете Maple.

  6. Рассматривается абстрактная задача о достижимости с ограничениями асимптотического характера, для которой конструируется несеквенциальное (вообще говоря) множество притяжения, получаемое посредством сопоставления решению соответствующего элемента притяжения. Сами же решения определяются в виде направленностей, фильтров или ультрафильтров пространства обычных решений (каждый из упомянутых классов достаточен для построения множества притяжения). Основное внимание уделяется вопросам построения множеств притяжения в классе ультрафильтров широко понимаемых измеримых пространств (пространства с семействами, замкнутыми относительно пересечений, измеримые пространства с алгебрами множеств и т.п.). В качестве инструмента исследования используется конструкция, возникающая при рассмотрении ультрафильтров решетки множеств.

  7. В работе обсуждаются методы совместного использования информации, полученной методами дистанционного зондирования морской поверхности из космоса и численных решений. На основе разработанных алгоритмов обобщаются результаты численного моделирования и данных спутниковых наблюдений о состоянии вод акватории Азовского моря за период 2013-2014 гг. Трехмерное гидродинамическое моделирование динамики вод и эволюции загрязнений в Азовском море выполнено с использованием модели POM (Princeton Ocean Model) при задании реального атмосферного воздействия SKIRON. Совместный анализ численных решений и данных космического мониторинга Aqua (MODIS) позволяет исследовать особенности пространственно-временной динамики загрязнений. Новые модельные алгоритмы применены для анализа согласованности результатов численных решений, данных спутниковых наблюдений и их сочетания. На основании использования динамико-стохастического метода усвоения спутниковой информации дана оценка качества модельного прогноза в зависимости от интервалов между усвоением спутниковых данных.

  8. Филиппов А.И., Ахметова О.В., Ковальский А.А.
    Нелинейная задача о фильтрационном поле плоского течения, с. 324-339

    Рассмотрена нелинейная задача о поле давления при одномерной плоской фильтрации, когда изменения плотности скелета, а также фильтрующейся жидкости и давления связаны пропорционально. Для решения задач использован асимптотический метод, основанный на введении в рассматриваемой задаче формального параметра и представлении искомого решения в виде асимптотической формулы по этому параметру. Показано, что постановки соответствующих задач для коэффициентов асимптотического разложения являются линейными, а для их решения могут быть использованы классические методы. Найдены аналитические выражения для коэффициентов асимптотического разложения решения. Показано, что соответствующие коэффициенты разложения остаточного члена текущего номера и все предшествующие ему по тому же формальному параметру, что и для искомого решения, обращаются в нуль. Использованный подход открывает новые возможности решения нелинейных задач фильтрации в неоднородной анизотропной пористой среде.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref