Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'F-space':
Найдено статей: 201
  1. Бадриев И.Б., Исмагилов И.Н., Исмагилов Л.Н.
    Метод решения нелинейных стационарных анизотропных задач фильтрации, с. 3-11

    Работа посвящена методу решения стационарных задач фильтрации несжимаемой жидкости, следующей нелинейному анизотропному многозначному закону фильтрации с предельным градиентом. Задача фильтрации сформулирована в виде вариационного неравенства второго рода с обратно сильно монотонным оператором в гильбертовом пространстве. Функционал, входящий в это вариационное неравенство, является суммой нескольких полунепрерывных снизу выпуклых собственных функционалов. Для решения вариационного неравенства предлагается использовать итерационный метод расщепления.

    Badriev I.B., Ismagilov I.N., Ismagilov L.N.
    On the method of solving of nonlinear stationary anisotropic filtration problems, pp. 3-11

    The paper is devoted to a method of solving of stationary filtration problems of non-compressible fluid which follows the nonlinear multi-valued anisotropic law of filtration with limiting gradient. This problem mathematically is formulated in the form of variational inequality of the second kind in Hilbert space with inversely strongly monotone operator. The functional occurring in this variational inequality is a sum of several lower semi-continuous convex proper functionals. For solving the considered variational inequality the splitting method is offered.

  2. Доказана теорема, вводящая эквивалентные определения для некоторых пределов сходящихся последовательностей в расширении Белла счетного дискретного пространства.

    The theorem is proved which gives equivalent definitions of some limits of convergent sequence in Bell’s compactification of countable discrete space.

  3. В параметрическом семействе подпространств пространства прерывистых функций вводится понятие присоединенного интеграла (в каждом подпространстве применяется собственный интеграл). В подпространстве, представляющем их пересечение, также определено понятие присоединенного интеграла. Это подпространство содержит в себе пространство функций ограниченной вариации. В каждом подпространстве на основе присоединенного интеграла определяется понятие обобщенной прерывистой функции и ее присоединенной обобщенной производной. Доказана разрешимость линейных импульсных систем, заданных в терминах присоединенных обобщенных функций.

    Rodionov V.I.
    On solvability of impulse systems, pp. 3-18

    In parametrical family of subspaces of space of regulated functions the concept of the adjoint integral (in everyone subspace own integral is applied) is defined. In subspace, representing their crossing, the concept of the adjoint integral also is defined. This subspace includes the space of functions of the bounded variation. In any subspace on the basis of the adjoint integral the concept of the generalized regulated function and its adjoint generalized derivative is defined. Solvability of linear impulse systems in terms of adjoint generalized functions is proved.

  4. Работа посвящена изучению оценок скалярных произведений векторных полей и их применению при доказательстве разрешимости задач математической физики. В работе доказаны оценки скалярных произведений векторных полей в весовых функциональных пространствах суммируемых функций. В качестве примера применения таких оценок доказана разрешимость задачи об определении стационарного магнитного поля в трёхмерном евклидовом пространстве, содержащем ограниченную проводящую область. Также показана связь предложенной постановки задачи и соответствующей вариационной формулировки. Изучена возможность определения остальных неизвестных функций (электрического поля, объёмной плотности электрических зарядов) внутри проводящей подобласти.

    The paper is devoted to studying of estimations of scalar products of vector fields and their application in the proof of solvability for mathematical physics problems. The estimations of scalar products of vector field were proved in weighted functional spaces of summable functions. As an example of the application of such estimations there was proved the solvability for the problem of determination of stationary magnetic field in whole three-dimensional Euclidian space containing bounded conducting domain. The association between the proposed problem statement and the corresponding variational statement was shown too. There was investigated the possibility of determination of another unknown functions (electric field, volume density of electrical charge) inside the conducting domain.

  5. Рассматривается вопрос о существовании рекуррентных и почти рекуррентных сечений многозначных отображений R ∋ tF(t) ∈ compU с непустыми компактными образами F(t) в полном метрическом пространстве U. На множестве compU вводится метрика Хаусдорфа dist. Рекуррентные и почти рекуррентные многозначные отображения определяются как функции со значениями в метрическом пространстве (compU, dist). Доказано существование рекуррентных (почти рекуррентных) сечений многозначных рекуррентных (соответственно, почти рекуррентных) равномерно абсолютно непрерывных отображений. Рассматриваются также отображения R ∋ t → F(t), образы которых состоят из конечного числа точек (зависящего от t). Доказано, что если такое отображение почти рекуррентно, то у него существует почти рекуррентное сечение. Многозначное рекуррентное отображение, образы F(t) которого для всех t ∈ R состоят не более чем из n точек (где n ∈ N), имеет рекуррентное сечение. Если образы многозначного рекуррентного (почти рекуррентного) отображения tF(t) при всех t ∈ R состоят из n точек, то все n непрерывных сечений отображения F рекуррентны (почти рекуррентны).

    In the paper, we consider the problem of existence of recurrent and almost recurrent selections of multivalued mappings R ∋ tF(t) ∈ compU with nonempty compact sets F(t) in a complete metric space U. The set compU is equipped with the Hausdorff metric dist. Recurrent and almost recurrent multivalued maps are defined as the functions with values in the metric space (compU, dist). It is proved that there are recurrent (almost recurrent) selections of multivalued recurrent (almost recurrent) uniformly absolutely continuous maps. We also consider mappings R ∋ tF(t) with the sets F(t) consisting of a finite number of points (the number depends on the t ∈ R). We prove that if such a map is almost recurrent, then it has an almost recurrent selection. A multivalued recurrent mapping tF(t) with sets F(t) consisting of at most n points (where n ∈ N) has a recurrent selection. If the sets F(t) of a multivalued recurrent (almost recurrent) mapping tF(t) consist of n points for all t ∈ R, then all n continuous selections of the map F are recurrent (almost recurrent).

  6. Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.

    A function defined on an open (finite, semi-finite, infinite) interval is called regulated if it has finite one-sided limits at each point of its domain. In the present paper we study spaces of regulated functions, in particular, their dense subsets. Our motivation is applications to differential equations. Namely, we consider the Cauchy problem for a scalar linear differential equation with coefficients, which are derivatives of regulated functions. We immerse the Cauchy problem into the space of the Colombeau generalized functions. If the coefficients are derivatives of step functions, we find explicit solution R(φμ,t) of the Cauchy problem (in terms of representatives); its limit as μ→+0 is defined to be the solution of the original problem. In this way, we obtain a densely defined (on the space of regulated functions) operator T, which associates the solution to a Cauchy problem with this problem. Next, using a well-known topological result on a continuous extension, we extend the operator T to the operator T defined on the entire space of regulated functions. We have given the explicit representation of solution of the Cauchy problem for the inhomogeneous differential equation. Illustrative examples are also offered.

  7. Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.

    The paper is concerned with the problem of absolute continuity of the spectrum of the two-dimensional generalized periodic Schrodinger operator $H_g+V=-\nabla g\nabla+V$ where the continuous positive function $g$ and the scalar potential $V$ have a common period lattice $\Lambda$. The solutions of the equation $(H_g+V)\varphi=0$ determine, in particular, the electric field and the magnetic field of electromagnetic waves propagating in two-dimensional photonic crystals. The function $g$ and the scalar potential $V$ are expressed in terms of the electric permittivity $\varepsilon$ and the magnetic permeability $\mu$ ($V$ also depends on the frequency of the electromagnetic wave). The electric permittivity $\varepsilon$ may be a discontinuous function (and usually it is chosen to be piecewise constant) so the problem to relax the known smoothness conditions on the function $g$ that provide absolute continuity of the spectrum of the operator $H_g+V$ arises. In the present paper we assume that the Fourier coefficients of the functions $g^{\pm\frac12}$ for some $q\in[1, \frac43)$ satisfy the condition $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$, and the scalar potential $V$ has relative bound zero with respect to the operator $-\Delta$ in the sense of quadratic forms. Let $K$ be the fundamental domain of the lattice $\Lambda$, and assume that $K^*$ is the fundamental domain of the reciprocal lattice $\Lambda^*$. The operator $H_g+V$ is unitarily equivalent to the direct integral of operators $H_g(k)+V$, with quasimomenta $k\in 2\pi K^*$, acting on the space $L^2(K)$. The last operators can be also considered for complex vectors $k+ik'\in \mathbb{C}^2$. We use the Thomas method. The proof of absolute continuity of the spectrum of the operator $H_g+V$ amounts to showing that the operators $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, are invertible for some appropriately chosen complex vectors $k+ik'\in \mathbb{C}^2$ (depending on $g$, $V$, and the number $\lambda$) with sufficiently large imaginary parts $k'$.

  8. В работе рассматриваются вопросы, связанные со сходящимися последовательностями в $T_1$-пространствах. Свойства $T_1$-пространств, в том числе и сходимость последовательностей в них, отличаются от аналогичных свойств хаусдорфовых пространств, в частности, предел сходящейся последовательности может быть не единствен. Наиболее ярко эти особенности демонстрирует минимальное $T_1$-пространство. В работе рассматриваются вопросы, порожденные свойствами минимального $T_1$-пространства. Рассматриваются свойства пространств, в которых всякая последовательность является сходящейся (теоремы 1 и 2 и пример 1). Одной из основных является проблема связи между сходимостью последовательностей и свойствами подпространств. Хорошо известно, что компактность, счетная компактность и секвенциальная компактность не эквивалентны в общем случае. Однако, доказано (теорема 7), что наследственные секвенциальная компактность, счетная компактность и компактность эквивалентны.

    Gryzlov A.A., Tsigvintseva K.N.
    On convergent sequences and properties of subspaces, pp. 277-283

    We consider problems connected with the notion of convergent sequences in $T_1$-spaces. The properties of $T_1$-spaces and convergent sequences in these spaces considerably differ from the same properties of Hausdorff spaces. We consider problems connected with the properties of the minimal $T_1$-space. We consider properties of spaces where every sequence is a convergent sequence (Theorems 1 and 2 and Example 1). One of the main problems is the connection between convergent sequences and the properties of subspaces of the space. It is well known that the compactness, countable compactness and sequential compactness are not equivalent in general. We prove (Theorem 7) that hereditary sequential compactness, compactness and countable compactness are equivalent.

  9. Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова-Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова-Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.

    We consider the model of chaotic motion of a plate in a viscous fluid, described by an oscillatory system of three ordinary differential equations with a quadratic nonlinearity. In the course of the bifurcation study of singular points of the system, maps of the types of singular points are constructed and a surface equation is found in the space of dissipation and circulation parameters on which the Andronov-Hopf bifurcation of the limit cycle creation takes place. With a further change in the parameters near the Andronov-Hopf surface, cascades of the period doubling doubling of the Feigenbaum cycle and the Sharkovsky subharmonic cascades, ending with the creation of a cycle of period three, are found. Expressions are obtained for saddle numbers of the saddle-node and two saddle-foci and their plots are plotted in the parameter space. It is shown that homoclinic cascades of bifurcations are realized in the system with the destruction of homoclinic trajectories of saddle-foci. The existence of homoclinic trajectories of saddle-foci is proved by a numerical-analytical method. The graphs of the largest Lyapunov exponent and the bifurcation diagrams show that when the dissipation coefficients change, the system switches to chaos in several stages.

  10. Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.

    Afanasova M.S., Obukhovskii V.V., Petrosyan G.G.
    On a generalized boundary value problem for a feedback control system with infinite delay, pp. 167-185

    We consider a non-local boundary value problem for a feedback control system described by a semilinear functional-differential inclusion of fractional order with infinite delay in a separable Banach space. The general principle of existence of solutions to the problem in terms of the difference from zero of the topological degree of the corresponding vector field is given. We prove a concrete example (Theorem 6) of the implementation of this general principle. The existence of an optimal solution to the posed problem is proved, which minimizes the given lower semicontinuous quality functional.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref