Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается вопрос о существовании рекуррентных и почти рекуррентных сечений многозначных отображений R ∋ t → F(t) ∈ compU с непустыми компактными образами F(t) в полном метрическом пространстве U. На множестве compU вводится метрика Хаусдорфа dist. Рекуррентные и почти рекуррентные многозначные отображения определяются как функции со значениями в метрическом пространстве (compU, dist). Доказано существование рекуррентных (почти рекуррентных) сечений многозначных рекуррентных (соответственно, почти рекуррентных) равномерно абсолютно непрерывных отображений. Рассматриваются также отображения R ∋ t → F(t), образы которых состоят из конечного числа точек (зависящего от t). Доказано, что если такое отображение почти рекуррентно, то у него существует почти рекуррентное сечение. Многозначное рекуррентное отображение, образы F(t) которого для всех t ∈ R состоят не более чем из n точек (где n ∈ N), имеет рекуррентное сечение. Если образы многозначного рекуррентного (почти рекуррентного) отображения t → F(t) при всех t ∈ R состоят из n точек, то все n непрерывных сечений отображения F рекуррентны (почти рекуррентны).
In the paper, we consider the problem of existence of recurrent and almost recurrent selections of multivalued mappings R ∋ t → F(t) ∈ compU with nonempty compact sets F(t) in a complete metric space U. The set compU is equipped with the Hausdorff metric dist. Recurrent and almost recurrent multivalued maps are defined as the functions with values in the metric space (compU, dist). It is proved that there are recurrent (almost recurrent) selections of multivalued recurrent (almost recurrent) uniformly absolutely continuous maps. We also consider mappings R ∋ t → F(t) with the sets F(t) consisting of a finite number of points (the number depends on the t ∈ R). We prove that if such a map is almost recurrent, then it has an almost recurrent selection. A multivalued recurrent mapping t → F(t) with sets F(t) consisting of at most n points (where n ∈ N) has a recurrent selection. If the sets F(t) of a multivalued recurrent (almost recurrent) mapping t → F(t) consist of n points for all t ∈ R, then all n continuous selections of the map F are recurrent (almost recurrent).
-
Построена метрика в пространстве clos(Rn) всех непустых замкнутых (необязательно ограниченных) подмножеств Rn. Сходимость последовательности множеств в этой метрике оказывается равносильной сходимости в метрике Хаусдорфа последовательности пересечений этих множеств с центрированными в нуле шарами любого положительного радиуса, дополненных соответствующими сферами. В этой метрике доказана полнота пространства clos(Rn) и замкнутость подпространства всех непустых замкнутых выпуклых подмножеств Rn. Получены условия равносильности сходимости по предложенной метрике и сходимости по метрикам Хаусдорфа и Хаусдорфа–Бебутова. Полученные результаты могут применяться в задачах управления, теории дифференциальных включений.
In the work, there is presented a new metric in the space clos(Rn) of all nonempty closed (not necessarily bounded) subsets of Rn. The convergence of sets in this metric is equivalent to convergence in the Hausdorff metric of the intersections of the given sets with the balls of any positive radius centered at zero united then with the corresponding spheres. It is proved that, with respect to the metric considered, the space clos(Rn) is complete, and its subspace of nonempty closed convex subsets of Rn is closed. There are also derived the conditions that guarantee the equivalence of convergence in this metric to convergence in the Hausdorff metric, and to convergence in the Hausdorff–Bebutov metric. The results obtained can be applied to studying control problems and differential inclusions.
-
О неподвижных точках многозначных отображений метрических пространств и дифференциальных включениях, с. 12-26В работе предложено обобщение теоремы Надлера о неподвижных точках для многозначных отображений действующих в метрических пространствах. Полученный результат позволяет изучать существование неподвижных точек у многозначных отображений, которые не обязательно являются сжимающими, и даже непрерывными, относительно метрики Хаусдорфа, и образами которых могут быть произвольные множества соответствующего метрического пространства. Упомянутый результат можно использовать для исследования дифференциальных и функционально-дифференциальных уравнений с разрывами, а также включений, правые части которых порождены многозначными отображениями с произвольными образами. Во второй части работы, в качестве приложения, получены условия существования и продолжаемости решений задачи Коши для дифференциального включения с некомпактной правой частью в пространстве Rn.
A generalization of the Nadler fixed point theorem for multi-valued maps acting in metric spaces is proposed. The obtained result allows to study the existence of fixed points for multi-valued maps that have as images any arbitrary sets of the corresponding metric space and are not necessarily contracting, or even continuous, with respect to the Hausdorff metric. The mentioned result can be used for investigating differential and functional-differential equations with discontinuities and inclusions generated by multi-valued maps with arbitrary images. In the second part of the paper, as an application, conditions of existence and continuation of solutions to the Cauchy problem for a differential inclusion with noncompact in Rn right-hand side are derived.
-
Пусть $(U,\rho )$ - полное метрическое пространство, ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, и ${\mathcal R} ({\mathbb R},U)$ - пространства (сильно) измеримых функций $f:{\mathbb R}\to U$, преобразования Бохнера ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ которых являются рекуррентными функциями со значениями в метрических пространствах $L^p([-l,l],U)$ и $L^1([-l,l], (U,\rho ^{ \prime }))$, где $l>0$ и $(U,\rho^{ \prime })$ - полное метрическое пространство с метрикой $\rho ^{ \prime }(x,y)=\min\{ 1, \rho (x,y)\} ,$ $x, y\in U.$ Аналогично определяются пространства ${\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ и ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ функций (многозначных отображений) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ со значениями в полном метрическом пространстве $({\mathrm {cl}}\,_{ b}\, U, {\mathrm {dist}})$ непустых замкнутых ограниченных подмножеств метрического пространства $(U,\rho )$ с метрикой Хаусдорфа ${\mathrm {dist}}$ (при определении многозначных отображений $F\in {\mathcal R} ({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ рассматривается также метрика ${\mathrm {dist}} ^{ \prime }(X,Y)=\min\{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$). Доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ (соответственно $f\in {\mathcal R}^p ({\mathbb R},U)$) многозначных отображений $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (соответственно $F\in {\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$), для которых множества почти периодов подчинены множествам почти периодов многозначных отображений $F$. Для функций $g\in {\mathcal R} ({\mathbb R},U)$ приведены условия существования сечений $f\in {\mathcal R} ({\mathbb R},U)$ и $f\in {\mathcal R}^p ({\mathbb R},U),$ для которых $\rho (f(t),g(t))=\rho (g(t),F(t))$ при п.в. $t\in {\mathbb R}$. В предположении, что для любого $\varepsilon >0$ существует относительно плотное множество общих $\varepsilon $-почти периодов функции $g$ и многозначного отображения $F$, также доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ таких, что $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ при п.в. $t\in {\mathbb R}$, где $\eta :[0,+\infty ) \to [0,+\infty )$ - произвольная неубывающая функция, для которой $\eta (0) =0$ и $\eta (\xi )>0$ при всех $\xi >0$, при этом $f\in {\mathcal R}^p ({\mathbb R},U)$ в случае $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ При доказательстве используется равномерная аппроксимация функций $f\in {\mathcal R} ({\mathbb R},U)$ элементарными функциями из пространства ${\mathcal R} ({\mathbb R},U)$ множества почти периодов которых подчинены множествам почти периодов функций $f$.
Let $(U,\rho )$ be a complete metric space and let ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, and ${\mathcal R} ({\mathbb R},U)$ be the spaces of (strongly) measurable functions $f:{\mathbb R}\to U$ for which the Bochner transforms ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ are recurrent functions with ranges in the metric spaces $L^p([-l,l],U)$ and $L^1([-l,l],(U,\rho ^{ \prime }))$ where $l>0$, and $(U,\rho ^{ \prime })$ is the complete metric space with the metric $\rho ^{ \prime }(x,y)=\min \{ 1,\rho (x,y)\} ,$ $x, y\in U.$ Analogously, we define the spaces ${\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ and ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ of functions (multivalued mappings) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ with ranges in the complete metric space $({\mathrm {cl}}\,_{ b}\, U,{\mathrm {dist}})$ of nonempty closed bounded subsets of the metric space $(U,\rho )$ with the Hausdorff metric ${\mathrm {dist}}$ (while defining the multivalued mappings $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ the metric ${\mathrm {dist}} ^{ \prime }(X,Y)=\min \{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$, is also considered). We prove the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ (accordingly $f\in {\mathcal R}^p({\mathbb R},U)$) of multivalued maps $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (accordingly $F\in {\mathcal R}^p ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$) for which the sets of almost periods are subordinated to the sets of almost periods of multivalued maps $F$. For functions $g\in {\mathcal R} ({\mathbb R},U),$ the conditions for the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ and $f\in {\mathcal R}^p({\mathbb R},U)$ such that $\rho (f(t),g(t))=\rho (g(t),F(t))$ for a.e. $t\in {\mathbb R}$ are obtained. On the assumption that the function $g$ and the multivalued map $F$ have relatively dense sets of common $\varepsilon $-almost periods for all $\varepsilon >0$, we also prove the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ such that $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ for a.e. $t\in {\mathbb R}$, where $\eta :[0,+\infty ) \to [0,+\infty )$ is an arbitrary nondecreasing function for which $\eta (0)=0$ and $\eta (\xi )>0$ for all $\xi >0$, and, moreover, $f\in {\mathcal R}^p({\mathbb R},U)$ if $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ To prove the results we use the uniform approximation of functions $f\in {\mathcal R} ({\mathbb R},U)$ by elementary functions belonging to the space ${\mathcal R} ({\mathbb R},U)$ which have the sets of almost periods subordinated to the sets of almost periods of the functions $f$.
-
Получены достаточные условия асимптотической устойчивости и слабой асимптотической устойчивости заданного множества $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ относительно управляемой системы с импульсным воздействием в предположении, что функция $t\mapsto M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и замкнуто. Также получены условия, при которых для каждого решения $x(t,x_0)$ управляемой системы, выходящего из достаточно малой окрестности множества $M(t_0),$ найдется момент времени $t^*$ такой, что точка $(t,x(t,x_0))$ принадлежит $\mathfrak M$ при всех $t\in [t^*,+\infty).$ Некоторые из представленных здесь утверждений являются аналогами результатов Е.А. Панасенко и Е.Л. Тонкова для систем с импульсами, в других утверждениях существенно используется специфика импульсного воздействия. Результаты работы проиллюстрированы на примере модели «вредитель-биоагент» с импульсным управлением в предположении, что вбросы биоагентов (природных врагов данных вредителей) происходят в фиксированные моменты времени и количество вредителей, потребляемых в среднем одним биоагентом за единицу времени, задается трофической функцией Холлинга. Получены условия асимптотической устойчивости множества $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ где $x_1={y_1}/{K},$ $y_1$ - размер популяции вредителей, $K$ - емкость среды.
управляемые системы с импульсным воздействием, функции Ляпунова, асимптотически устойчивые множестваWe get sufficient conditions for asymptotic stability and weak asymptotic stability of a given set $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ with respect to the control system with impulse actions. We assume that the function $t\mapsto M(t)$ is continuous in the Hausdorff metric and for each $t \in [t_0,+\infty)$ the set $M(t)$ is nonempty and closed. Also, we obtain conditions under which for every solution $x(t,x_0)$ of the control system that leaves a sufficiently small neighborhood of the set $M(t_0)$ there exists an instant $t^*$ such that point $(t,x(t,x_0))$ belongs to $\mathfrak M$ for all $t\in[t^*,+\infty).$ Some of the statements presented here are analogues of the results obtained by E.A. Panasenko and E.L.Tonkov for systems with impulses, and in other statements the specificity of impulse actions is essentially used. The results of this paper are illustrated by the “pest-bioagents” model with impulse control and we assume that the addition of bioagents (natural enemies of the given pests) occur at fixed instants of time and the number of pests consumed on average by one biological agent per unit time is given by the trophic Holling function. We obtain conditions for asymptotic stability of the set $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ where $x_1=y_1/K,$ $y_1$ is the size of the population of pests and $K$ is the capacity of environment.
-
Продолжено исследование условий положительной инвариантности и асимптотической устойчивости заданного множества относительно управляемой системы с импульсным воздействием. Рассматривается множество $\mathfrak M \doteq \bigl\{ (t,x) \in [t_0,+\infty) \times \mathbb{R}^n: x\in M(t)\bigr\}$, где функция $t\rightarrow M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и компактно. В терминах функций Ляпунова и производной Кларка получены условия слабой положительной инвариантности данного множества, слабой равномерной устойчивости по Ляпунову и слабой асимптотической устойчивости. Также доказана теорема сравнения для решений систем и уравнений с импульсами, следствием которой являются условия существования решений системы, асимптотически стремящихся к нулю. Полученные результаты проиллюстрированы на примере модели конкуренции двух видов, подверженных импульсному управлению в фиксированные моменты времени.
управляемые системы с импульсным воздействием, функции Ляпунова, слабая асимптотическая устойчивостьWe continue investigating the conditions of positive invariance and asymptotic stability of a given set relative to a control system with impulsive actions. We consider the set $\mathfrak M \doteq \bigl\{ (t,x) \in[t_0,+\infty) \times \mathbb{R}^n: x\in M(t)\bigr\}$, given by a function $t\rightarrow M(t)$ that is continuous in the Hausdorff metric, where the set $M(t)$ is nonempty and compact for each $t \in \mathbb R$. In terms of the Lyapunov functions and the Clarke derivative, we obtain conditions for weak positive invariance, weak uniform Lyapunov stability and weak asymptotic stability of the set $\mathfrak M$. Also we prove a comparison theorem for solutions of systems and equations with impulses the consequence of which is the conditions for existence of solutions of the system that asymptotically tends to zero. The obtained results are illustrated by the example of model for competition of two species exposed to impulse control at given times.
-
Об одной задаче корректности минимакса, с. 275-280В теории игр и теории исследования операций часто появляется минимакс от функции $f(x,y)$, зависящей от двух векторных переменных $x$, $y$. Изучению свойств минимакса (или максимина) посвящено много работ. Минимакс можно трактовать как наименьший гарантированный результат для минимизирующего игрока (минимизирующей оперирующей стороны). При изучении минимаксных задач определенный интерес представляют различные вопросы о корректности. Одному из таких вопросов посвящена настоящая статья. В ней векторы $x$, $y$ принадлежат компактам $P$, $Q$ из соответствующих евклидовых пространств $R^k$, $R^l$, а функция $f(x,y)$ непрерывна на произведении пространств $R^k\times R^l$. В статье рассматривается вопрос о зависимости минимакса от малых изменений компактов $P$, $Q$ в метрике Хаусдорфа. Обосновывается непрерывность зависимости минимакса от малых вариаций множеств $P$, $Q$.
On one correctness problem for minimax, pp. 275-280In game theory and operations research theory, a minimax often appears for a function $f(x,y)$ that depends on two vector variables $x$, $y$. Many works have been devoted to the study of the properties of minimax (or maximin). A minimax can be interpreted as the smallest guaranteed result for the minimizing player (the minimizing operator). In the study of minimax problems, various correctness issues are of some interest. This paper is devoted to one of these issues. In it, vectors $x$, $y$ belong to compacts $P$, $Q$ of corresponding Euclidean spaces $R^k$, $R^l$, and function $f(x,y)$ is continuous on product of spaces $R^k\times R^l$. The paper considers the dependence of minimax on small changes of compacts $P$, $Q$ in the Hausdorff metric. The continuity of the dependence of minimax on small variations of compacts $P$, $Q$ is proved.
-
Получены условия, позволяющие оценивать относительную частоту пребывания множества достижимости управляемой системы в некотором заранее заданном множестве. Если относительная частота пребывания в этом множестве равна единице, то данное множество называется статистически инвариантным. Получены также условия, при которых заданное множество статистически слабо инвариантно относительно управляемой системы, то есть для каждой начальной точки из этого множества по крайней мере одно решение управляемой системы, статистически инвариантно. Предполагается, что образы правой части дифференциального включения, отвечающего данной управляемой системе, замкнуты, но не обязательно компактны. Основные утверждения формулируются в терминах функций Ляпунова, метрики Хаусдорфа–Бебутова и динамической системы сдвигов, сопутствующей правой части дифференциального включения.
управляемые системы, динамические системы, дифференциальные включения, слабо инвариантные и статистически слабо инвариантные множестваWe obtain the conditions that allow to estimate the relative frequency of occurence of the attainable set of a control system in some given set. The set is called statistically invariant if the relative frequency of occurence in this set is equal to one. We also derive the conditions of the statistically weak invariance of the given set with respect to controllable system, that is, for every initial point from this set, at least one solution of the control system is statistically invariant. We suggest that the images of the right hand part of the differential inclusions corresponding for the given control system are closed but may be not compact. The main results are formulated in the terms of Lyapunov functions, metric of Hausdorff-Bebutov and the dynamical system of shifts that attended in the right hand part of the differential inclusion.
-
Работа посвящена проблеме построения наилучшего аппроксимирующего покрытия ограниченного плоского множества M конечным набором кругов одного радиуса. Проблема считается решенной, если удалось построить наилучшую в смысле хаусдорфовой метрики n-сеть рассматриваемого множества. В работе приведены достаточные условия оптимальности n-сети, предложен алгоритм построения наилучших сетей на основе разбиения M на подмножества и отыскания их чебышевских центров. Эффективность созданного алгоритма показана на примерах множеств с различной геометрией.
The article is devoted to the problem of constructing an optimal approximating circle-cover for the bounded flat set by the finite number of circles with equal radius. The problem is solved if the best n-net in meaning of Hausdorff metric is constructed for the considered set. Sufficient conditions of optimality of the n-nets are given. The best net-construction algorithm based on dividing of the set M into subsets and finding their Chebyshev centers is realized. This algorithm is proved to be efficient with the examples of sets with different geometry.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.