Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'Stone space of Boolean algebra':
Найдено статей: 7
  1. Грызлов А.А., Бастрыков Е.С., Головастов Р.А.
    О точках одного бикомпактного расширения N, с. 10-17

    Изучается бикомпактное расширение счётного дискретного пространства, построенное как пространство Стоуна одной булевой алгебры. Получены новые классы точек этого расширения.

    Gryzlov A.A., Bastrykov E.S., Golovastov R.A.
    About points of compactification of N, pp. 10-17

    We consider a compactification of a countable discrete space constructed as a Stone space of a Boolean algebra. Some new points of the compactification are constructed.

  2. Рассматривается компактификация BN счётного дискретного пространства N. В данной работе описаны свойства замыканий подмножеств BN, состоящих из различных классов точек. Показано существование точек, не принадлежащих классам, выделенным ранее.

    Bastrykov E.S.
    On closures of countable subsets of BN, pp. 15-20

    We consider a compactification BN of a countable discrete space N. The paper describes some properties of the closures of subsets of BN, which consist of points belonging to different classes. We prove the existence of points which do not belong to the classes obtained before.

  3. Грызлов А.А., Головастов Р.А.
    О пространствах Стоуна некоторых булевых алгебр, с. 11-16

    Pассматриваются пространства Стоуна BD и BS двух булевых алгебр. Доказывается, что множество свободных ультрафильтров пространства BD и пространство BS гомеоморфны канторову совершенному множеству.

    Gryzlov A.A., Golovastov R.A.
    The Stone spaces of Boolean algebras, pp. 11-16

    We consider the Stone spaces BD and BS of two Boolean algebras. We prove, that the subspace ĈBD of free ultrafilters of the space BD, and the space BS are homeomorphic to the Cantor set.

  4. В работе рассматривается пространство Стоуна булевой алгебры подмножеств одного счетного частично упорядоченного множества. Главной особенностью этого множества является наличие бесконечного числа непосредственных последователей у каждого его элемента. Отсюда следует, что каждый фиксированный ультрафильтр данного пространства Стоуна является неизолированной точкой, а подмножество свободных ультрафильтров всюду плотно. В работе дана классификация точек пространства, доказано, что есть свободные ультрафильтры, которые не являются пределами последовательностей фиксированных ультрафильтров, а также свободные ультрафильтры, определяемые цепями частично упорядоченного множества. Рассмотрены кардинальные инварианты подпространства свободных ультрафильтров. Доказано, что это подпространство имеет счетное число Суслина, но не сепарабельно.

     

    Gryzlov A.A., Golovastov R.A.
    On the density and Suslin number of subsets of one Stone space, pp. 18-24

    The paper concerns the Stone space of the Boolean algebra of subsets of one countable partially ordered set. The main feature of this set is the existence of countably many successors of each of its elements. From this property it follows that every fixed ultrafilter of this Stone space is a nonisolated point; the subset of free ultrafilters is dense everywhere. The classification of space points is given; the fact that there are free ultrafilters, which are not limits of sequences of fixed ultrafilters, as well as free ultrafilters determined by chains of partially ordered set, is proved. The cardinal invariants of the subspace of free ultrafilters are considered. It is shown that this subspace has the countable Suslin number, but is not separable.

     


  5. Рассматривается одна булева алгебра и ее пространство Стоуна как бикомпактное расширение счетного дискретного пространства. Доказаны некоторые свойства этого расширения.

    We consider one Boolean algebra and its Stone space as a compactification of a countable discrete space. Some properties of the compactification are proved.

  6. В данной работе рассматривается булева алгебра того же типа, что и алгебра, построенная Беллом, и пространство Стоуна этой булевой алгебры. Данное пространство является компактификацией счетного дискретного пространства N. Доказано существование изолированных точек в наросте данной компактификации, которые являются пределами некоторых сходящихся последовательностей. Также доказано, что любое открыто-замкнутое подмножество нашего пространства, которое гомеоморфно βω, является замыканием объединения конечного числа антицепей из N. В конце приведены два примера: замкнутое подмножество нароста без изолированных точек, которое не гомеоморфно βω\ω; подмножество нароста, которое гомеоморфно βω\ω, но не является замкнутым.

    Golovastov R.A.
    About Stone space of one Boolean algebra, pp. 19-24

     

    We consider the Boolean algebra of the same type as algebra constructed by Bell, and the Stone space of this Boolean algebra. This space is a compactification of a countable discrete space N. We prove that there are isolated points in a remainder of this compactification, which are limits of some convergent sequences. We prove that a clopen subset of our space, which is homeomorphic to βω, is a closure of the union of finitely many antichains from N. We construct two examples: a clopen subset of the remainder without isolated points, which is not homeomorphic to βω\ω; a subset of the remainder which is homeomorphic to βω\ω, but is not a clopen.

     

  7. Решаются вопросы, связанные с замыканием счётных подмножеств пространства Стоуна одной булевой алгебры, являющегося компактификацией счётного дискретного пространства. Показано существование сходящихся последовательностей в наросте этого расширения.

    We consider closures of countable subsets of Stone space of one Boolean algebra, which is a compactification of a countable discrete space. We prove the existence of converging sequences in a remainder of this compactification.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref