Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'approximation':
Найдено статей: 119
  1. Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.

    In this paper we study a boundary value problem for the fourth order partial differential equation with the lowest term in a rectangular domain. For the solution of the problem a priori estimate is obtained. From a priori estimate the uniqueness of the solution of the problem follows. For the proof of the solvability of this problem we use the method of separation of variables. The solvability of this problem is reduced to the Fredholm integral equation of the second kind with respect to unknown function. Integral equation is solved by the method of successive approximations. We find the sufficient conditions for the absolute and uniform convergence of series representing the solution of the problem and the series obtained by differentiation four times with respect x and two times with respect to t.

  2. Работа посвящена изучению наилучших равномерных рациональных приближений (НРРП) непрерывных функций на компактных, в том числе конечных, подмножествах числовой оси $\mathbb{R}$. Показано, что НРРП на конечном множестве существует не всегда. Более подробно изучен алгоритм Гельмута Вернера поиска НРРП вида $P_m/Q_n = \sum\limits_{i=0}^m a_i x^i \big/ \sum\limits_{j=0}^n b_j x^j$ для функций на множестве из $N=m+n+2$ точек $x_1<\ldots<x_N$. Этот алгоритм может использоваться в алгоритме Ремеза поиска НРРП на отрезке. При работе алгоритма Вернера вычисляется $(n+1)$ вещественное собственное значение $h_1,\ldots,h_{n+1}$ для пучка матриц $A-hB$, где $A$ и $B$ - некоторые симметричные матрицы. Каждому собственному значению сопоставляется своя рациональная дробь вида $P_m/Q_n$, являющаяся кандидатом на наилучшее приближение. Поскольку не более одной из этих дробей свободны от полюсов на отрезке $[x_1, x_N]$, то возникает задача отыскания того собственного значения, которому соответствует рациональная дробь без полюсов. В работе показано, что если $m=0$, все значения $f(x_1),-f(x_2),\ldots,(-1)^{n+2} f(x_{n+2})$ различны и НРРП положительно (отрицательно) во всех точках $x_1,\ldots,x_{n+2}$, то это собственное значение занимает $[(n+2)/2]$-е ($[(n+3)/2]$-е) место по величине. Приведены три численных примера, иллюстрирующих это утверждение.

    The paper deals with the best uniform rational approximations (BURA) of continuous functions on compact (and even finite) subsets of real axis $\mathbb{R}$.The authors show that BURA does not always exist. They study the algorithm of Helmut Werner in more detail. This algorithm serves to search for BURA of the type $P_m/Q_n = \sum\limits_{i=0}^m a_i x^i \big/ \sum\limits_{j=0}^n b_j x^j$ for functions on a set of $N=m+n+2$ points $x_1<\ldots<x_N$. It can be used within the Remez algorithm of searching for BURA on a segment. The Verner algorithm calculates $(n+1)$ real eigenvalues $h_1,\ldots,h_{n+1}$ for the matrix pencil $A-hB$, where $A$ and $B$ are some symmetric matrices. Each eigenvalue generates a rational fraction of the type $P_m/Q_n$ which is a candidate for the best approximation. It is known that at most one of these fractions is free from poles on the segment $[x_1, x_N]$, so the following problem arises: how to determine the eigenvalue which generates the rational fraction without poles? It is shown that if $m=0$ and all values $f(x_1),-f(x_2),\ldots,(-1)^{n+2} f(x_{n+2})$ are different and the approximating function is positive (negative) at all points $x_1,\ldots,x_{n+2}$, then this eigenvalue ranks $[(n+2)/2]$-th ($[(n+3)/2]$-th) in value. Three numerical examples illustrate this statement.

  3. В статье исследуются свойства функции цены задачи оптимального управления на бесконечном горизонте с неограниченным подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Выводится оценка аппроксимации функции цены в задаче с бесконечным горизонтом значениями функции цены в задачах с удлиняющимся конечным горизонтом. Выявляется структура функции цены через значения стационарной функции цены, зависящей только от фазовой переменной. Дается описание асимптотики роста значений функции цены для функционалов качества различного вида, принятых в экономическом и финансовом моделировании: логарифмических, степенных, экспоненциальных, линейных. Устанавливается свойство непрерывности функции цены и выводятся оценки гёльдеровских параметров непрерывности. Полученные оценки необходимы для разработки сеточных алгоритмов построения функций цены в задачах оптимального управления с бесконечным горизонтом.

    The article investigates properties of the value function of the optimal control problem on infinite horizon with an unlimited integrand index appearing in the quality functional with a discount factor. The estimate is derived for approximating the value function in a problem with the infinite horizon by levels of value functions in problems with lengthening finite horizons. The structure of the value function is identified basing on stationary value functions which depend only on phase variables. The description is given for the asymptotic growth of the value function generated by various types of the quality functional applied in economic and financial modeling: logarithmic, power, exponential, linear functions. The property of continuity is specified for the value function and estimates are deduced for the Hölder parameters of continuity. These estimates are needed for the development of grid algorithms designed for construction of the value function in optimal control problems with infinite horizon.

  4. В статье рассматриваются приближенные решения неантагонистических дифференциальных игр. Приближенное равновесие по Нэшу может быть построено по заданному решению вспомогательной стохастической игры с непрерывным временем. Мы рассматриваем случай, когда динамика вспомогательной игры задается марковской цепью с непрерывным временем. Для этой игры функция цены определяется решением системы обыкновенных дифференциальных включений. Таким образом, мы получаем конструкцию приближенного равновесия по Нэшу с выигрышами игроков, близкими к решениям системы обыкновенных дифференциальных включений. Также предложен способ построения марковской игры с непрерывным временем, аппроксимирующей исходную игру.

    The paper is concerned with approximate solutions of nonzero-sum differential games. An approximate Nash equilibrium can be designed by a given solution of an auxiliary continuous-time dynamic game. We consider the case when dynamics is determined by a Markov chain. For this game the value function is determined by an ordinary differential inclusion. Thus, we obtain a construction of approximate equilibria with the players' outcome close to the solution of the differential inclusion. Additionally, we propose a way of designing a continuous-time Markov game approximating the original dynamics.

  5. В статье рассматривается задача устойчивой реконструкции неизвестного входа системы по результатам неточных измерений ее решения. Суть задачи состоит в следующем. Имеется система, описываемая распределенным уравнением второго порядка, решение которой зависит от входа, меняющегося со временем. Как вход, так и решение заранее не известны. В дискретные моменты времени измеряется решение уравнения. Результаты измерения неточны. Требуется построить алгоритм приближенного восстановления входа, обладающий свойствами динамичности и устойчивости. Свойство динамичности означает, что текущие значения приближений входа вычисляются в реальном времени (он-лайн). Свойство устойчивости — что приближения являются достаточно точными, при хорошей точности измерений. Задача относится к классу обратных задач. Представленный в статье алгоритм основан на конструкциях теории устойчивого динамического обращения в комбинации с методами некорректных задач и позиционного управления.

    In this paper, we consider the stable reconstruction problem of the unknown input of a distributed system of second order by results of inaccurate measurements of its solution. The content of the problem considered is as follows. We consider a distributed equation of second order. The solution of the equation depends on the input varying in the time. The input, as well as the solution, is not given in advance. At discrete times the solution of the equation is measured. These measurements are not accurate in general. It is required to design an algorithm for approximate reconstruction of the input that has dynamical and stability properties. The dynamical property means that the current values of approximations of the input are produced on-line, and the stability property means that the approximations are arbitrarily accurate for a sufficient accuracy of measurements. The problem refers to the class of inverse problems. The algorithm presented in the paper is based on the constructions of a stable dynamical inversion and on the combination of the methods of ill-posed problems and positional control theory.

  6. Рассматривается задача с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в прямоугольной области. Исследуются вопросы существования и единственности классического решения рассматриваемой задачи, а также непрерывной зависимости решения от исходных данных. Предлагается новый подход к решению задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка на основе введения новых функций. Путем введения новых неизвестных функций задача сводится к эквивалентному семейству задач Коши для нагруженной системы дифференциальных уравнений с параметрами и интегральным соотношениям. Предложен алгоритм нахождения приближенного решения эквивалентной задачи и доказана его сходимость. Установлены условия однозначной разрешимости задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в терминах коэффициентов системы.

    We consider a problem with data on the characteristics for a loaded system of hyperbolic equations of the second order on a rectangular domain. The questions of the existence and uniqueness of the classical solution of the considered problem, as well as the continuity dependence of the solution on the initial data, are investigated. We propose a new approach to solving the problem with data on the characteristics for the loaded system of hyperbolic equations second order based on the introduction new functions. By introducing new unknown functions the problem is reduced to an equivalent family of Cauchy problems for a loaded system of differential with a parameters and integral relations. An algorithm for finding an approximate solution to the equivalent problem is proposed and its convergence is proved. Conditions for the unique solvability of the problem with data on the characteristics for the loaded system of hyperbolic equations of the second order are established in the terms of coefficient's system.

  7. Для класса динамических систем, включающего в себя уравнения колебаний упругой балки на упругом основании, автономные системы обыкновенных дифференциальных уравнений, системы гидродинамического типа и др., изложена процедура приближенного вычисления амплитуд периодических решений, бифурцирующих из точек покоя при наличии резонансов.

    The procedure of approximate calculation of amplitudes for periodic solutions bifurcating from rest points in the presence of resonance is studied for a class of dynamical systems. This class includes equations of spring beam oscillations located on elastic foundations, autonomous systems of ordinary differential equations, hydrodynamical systems etc. The methodological basis of the procedure is the Lyapunov-Schmidt method considered in the context of general theory of smooth SO(2)-equivariant Fredholm equations (in infinite dimensional Banach spaces). The topic of the paper develops and extends the earlier research of B.M Darinsky, Y.I. Sapronov, and V.A. Smolyanov.

  8. Рассмотрена задача локальной параметрической идентифицируемости системы в случае, когда параметр принадлежит конечномерному семейству функций. Во введении даны основные определения и необходимые обозначения. В первой части работы получен критерий локальной идентифицируемости систем по наблюдениям точного решения. Во второй части рассмотрена задача локальной идентифицируемости по наблюдениям приближенного решения, полученного с помощью численной аппроксимации точного решения, а также получено достаточное условие локальной идентифицируемости системы в рамках рассмотренной задачи.

    The problem of local parametric identifiability of system in case of finite parameter family was investigated. In introduction the main definitions and necessary denotations are given. In the first part the criterion of local parametric identifiability of systems in case of observation of the accurate solution was obtained. In the the second part the problem of local parametric identifiability of systems was investigated in case of observation of the approximated solution, derived by numerical approximation of the accurate solution. The criterion of local parametric identifiability of systems in this case was obtained also.

  9. Изучается вариационный подход к постановке и решению задачи приближения функций квазиполиномами  решениями однородных, автономных линейных разностных или дифференциальных уравнений.

    Egorshin A.O.
    On one variational smoothing problem, pp. 9-22

    We study the variational approach to setting and solving of the function approximating problem by quasipolynomials which are the solutions of the homogeneous autonomous linear difference or differential equations.

  10. Рассматривается биркгофова интерполяция функции двух переменных многочленами степени $2k+1$ по совокупности двух переменных на треугольнике. Подобные оценки автоматически переносятся на оценки погрешности метода конечных элементов, с которым тесно связаны. Оценки погрешности аппроксимации для производных функции в предложенных конечных элементах зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок погрешности аппроксимации функции и ее частных производных. Неулучшаемость понимается в том смысле, что существует функция из заданного класса и существуют абсолютные положительные константы, не зависящие от триангуляции, такие, что для любого невырожденного треугольника справедливы оценки снизу. В данной работе для рассматриваемых интерполяционных условий предлагается набор конкретных функций, позволяющих получить соответствующие оценки погрешности для определенных частных производных.

    The paper considers Birkhoff-type triangle-based interpolation of two-variable function by polynomials of $2k+1$ degree by set of two variables. Similar estimates are automatically transferred to error estimates of related finite element method. The approximation error estimates of derivatives for the given finite elements depend only on the decomposition diameter, and do not depend on triangulation angles. We show that obtained approximation error estimates for a function and its partial derivatives are unimprovable. Unimprovability is understood in a following sense: there exists a function from the given class and there exist absolute positive constants independent of triangulation such that for any nondegenerate triangle estimates from below are valid. In this work, a system of specific functions is offered for interpolation conditions. These functions allow to obtain corresponding error estimates for definite partial derivatives.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref