Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'attainability domain':
Найдено статей: 9
  1. Ухоботов В.И., Зайцева О.В.
    Об одной задаче импульсной встречи, с. 42-45

    Рассматривается игровая задача импульсной встречи в заданный момент времени, в случае когда первый игрок выбирает группу импульсных управлений, на выбор каждого из которых в процессе управления можно потратить свое заданное количество ресурсов. На выбор управления второго игрока накладывается геометрическое ограничение. Найдены достаточные условия возможности окончания игры из заданного начального состояния и построены соответствующие импульсные управления.

    Ukhobotov V.I., Zaytseva O.V.
    About one problem of a pulse meeting, pp. 42-45

    We consider the game problem of a pulse meeting in the given moment of time, in the case when the first player chooses group of pulse managements, for choice of each of which it is possible to spend the set quantity of resources in control process. On choice of control of the second player geometrical restriction is imposed. Sufficient conditions of possibility of the termination of game from preset start state are found and corresponding pulse controls are constructed.

  2. Рассматривается линейная дифференциальная игра с заданным моментом окончания $p$. Множества достижимости игроков являются $n$-мерными шарами. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Тот факт, что терминальное множество не является выпуклым, потребовал привлечения дополнительной теории, позволяющей находить сумму и разность Минковского для кольца и шара в $n$-мерном пространстве. На выбор управления первого игрока накладывается импульсное ограничение. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым усложняя задачу. Управление второго игрока стеснено геометрическими ограничениями. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. Построен максимальный стабильный мост, ведущий в заданный момент времени на терминальное множество. Стабильный мост определяется функциями внешнего и внутреннего радиусов, которые вычислены в явном виде.

    We consider a linear differential game with the fixed end time $p$. Attainability domains of players are $n$-dimensional balls. The terminal set of a game is determined by a condition for assigning the norm of a phase vector to a segment with positive ends. A set defined by this condition is named in the article as ring. The fact that the terminal set is not convex required an additional theory allowing us to calculate Minkowski sum and difference for a ring and a ball in $n$-dimensional space. Control of the first player has a pulse constraint. Abilities of the first player are determined by the stock of resources that can be used by the player at formation of his control. At certain moments of time the separation of a part of the resources stock is possible, which may implicate an “instantaneous” change of a phase vector, thereby complicating the problem. Control of the second player has geometrical constraints. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is opposite. The maximal stable bridge leading at fixed time to the terminal set has been constructed. A stable bridge is determined by the functions of internal and external radii, which are calculated explicitly.

  3. Рассматривается абстрактная задача о достижимости с ограничениями асимптотического характера. Ограничения такого типа могут возникать при ослаблении стандартных (в теории управления) ограничений, таких как фазовые ограничения, краевые и промежуточные условия, которым должны удовлетворять траектории системы. Однако ограничения асимптотического характера могут возникать и изначально, характеризуя тенденции в части реализации желаемого поведения. Так, например, можно говорить о реализации достаточно мощных импульсов управления исчезающе малой длительности. В этом последнем случае трудно говорить об ослаблении каких-либо стандартных ограничений. Так или иначе, мы сталкиваемся с набором ужесточающихся требований, каждому из которых можно сопоставить некоторый аналог области достижимости в теории управления, а точнее образ подмножества пространства обычных решений (управлений) при действии заданного оператора. В работе исследуются вопросы структуры возникающего (как аналог области достижимости) множества притяжения. Схема исследования базируется на применении специального варианта расширения пространства решений, допускающего естественную аналогию с расширением Волмэна, используемого в общей топологии. В этой ситуации естественно полагать, что пространство обычных решений оснащено некоторой топологией (обычно в этом случае исследуется $T_1$-пространство). В этой связи обсуждаются вопросы, связанные с заменой множеств, формирующих ограничения асимптотического характера, замыканиями и внутренностями, а также (частично) вопросы, связанные с представлением внутренности множества допустимых обобщенных элементов, образующего вспомогательное множество притяжения.

    The attainability problem with asymptotic constraints is considered. Such constraints can arise under weakening of constraints that are standard in control theory: phase constraints, boundary and intermediate conditions; trajectories of a system must satisfy these constraints. But asymptotic constraints can arise from the beginning as a characterization of trends in the implementation of desired behavior. For example, one can speak of implementation of powerful control impulses with vanishingly small duration. In this case, it is hard to tell whether any standard constraints are weakened. So, we have a set of complicating conditions with each of which we can juxtapose some analog of the attainability domain in control theory and (more precisely) the image of a subset of the usual solution space under the action of a given operator. In this paper, we investigate questions concerning the structure of an attraction set arising as an analog of the attainability domain. The investigation scheme is based on the application of a special way of extending solution space which admits a natural analogy with Wallman extension used in general topology. Then it is natural to suppose that the space of usual solutions is endowed with a topology (usually, it is a $T_1$-space that is explored in this case). In this connection, questions concerning the replacement of sets forming asymptotic constraints by closures and interiors are addressed. Partially, questions associated with representation of the interior of the set of admissible generalized elements that form an auxiliary attraction set are discussed.

  4. Рассматривается задача управления линейной системой нейтрального типа с импульсными ограничениями. Кроме того, предполагается заданной система промежуточных условий. Исследуется постановка, в которой допускается исчезающе малое ослабление упомянутых ограничений. В этой связи область достижимости (ОД) в фиксированный момент окончания процесса заменяется естественным асимптотическим аналогом — множеством притяжения (МП). Для построения последнего используется конструкция расширения в классе конечно-аддитивных (к.-а.) мер, используемых в качестве обобщенных управлений. Показано, что МП совпадает с ОД системы в классе обобщенных управлений – к.-а. мер. Исследуется структура упомянутого МП.

    The problem of control of a linear system of neutral type with impulse constraints is developed. In addition, a given system of intermediate conditions is assumed. A setting is investigated in which a vanishingly small relaxation of the mentioned restrictions is allowed. In this regard, the attainability domain (AD) at a fixed time of the end of the process is replaced by a natural asymptotic analog, the attraction set (AS). To construct the latter, we use the construction of an extension in the class of finitely additive (f.-a.) measures used as generalized controls. It is shown that the AS coincides with the AD of the system in the class of generalized controls – f.-a. measures. The structure of the mentioned AS is investigated.

  5. Рассматриваются общие свойства ультрафильтров π-систем с нулем и единицей, используемые при построении расширений абстрактных задач о достижимости для получения оценок множеств притяжения в топологическом пространстве. Обсуждаются возможности использования упомянутых ультрафильтров в качестве обобщенных элементов. Среди последних выделяются допустимые по отношению к ограничениям асимптотического характера исходной задачи. Целевой оператор данной задачи при очень общих условиях продолжается до непрерывного отображения, сопоставляющего каждому ультрафильтру π-системы предел соответствующего образа. При этом основное множество притяжения (асимптотический аналог множества достижимости) оценивается снизу непрерывным образом аналогичного вспомогательного множества в пространстве ультрафильтров. В частном случае реализации пространства Стоуна (когда используемая π-система является алгеброй множеств) упомянутая оценка превращается в равенство, связывающее искомое и вспомогательное множества притяжения; для последнего указано достаточно простое представление. Обсуждается вариант применения (в оценочных целях) расширения Волмэна.

    General properties of ultrafilters of π-systems with zero and unit used under extension constructing for abstract attainability problems with the aim of estimation for attraction sets in topological space are considered. Possibilities of employment of the above-mentioned ultrafilters as general elements are considered. Among them, elements admissible with respect to constraints of asymptotic character of the initial problem are selected. Under very general conditions, the goal operator of the given problem extends to the continuous mapping that takes each ultrafilter of π-system to the limit of corresponding image. The basic attraction set (an asymptotic analog of the attainability domain) is estimated from below by the continuous image of an analogous auxiliary set in the space of ultrafilters. In the particular case of realization of the Stone space (when the used π-system is an algebra of sets) the above-mentioned estimate is an equality connecting a desired attraction set and an auxiliary one; for the latter a sufficiently simple representation is given. The variant of application (in estimating goals) of the Wallman extension is discussed.

  6. В задачах управления построение и исследование областей достижимости и их аналогов очень важно. Эта статья адресована задачам о достижимости в топологических пространствах. Используются ограничения асимптотической природы, определяемые в виде непустых семейств множеств. Решение соответствующей задачи о достижимости определяется как множество притяжения. Точки этого множества притяжения (элементы притяжения) реализуются в классе приближенных решений, которые являются несеквенциальными аналогами приближенных решений Варги. Обсуждаются некоторые возможности применяемых компактификаторов. Рассматриваются вопросы реализации множеств притяжения с точностью до заданной окрестности. Исследуются некоторые топологические свойства множеств притяжения. Рассмотрен пример с пустым множеством притяжения.

    Chentsov A.G., Pytkeev E.G.
    Constraints of asymptotic nature and attainability problems, pp. 569-582

    In control problems, construction and investigation of attainability domains and their analogs are very important. This paper addresses attainability problems in topological spaces. Constraints of asymptotic nature defined in the form of nonempty families of sets are used. The solution of the corresponding attainability problem is defined as an attraction set. Points of this attraction set (attraction elements) are realized in the class of approximate solutions which are nonsequential analogs of the Warga approximate solutions. Some possibilities of applying compactifiers are discussed. Questions of the realization of attraction sets up to a given neighborhood are considered. Some topological properties of attraction sets are investigated. An example with an empty attraction set is considered.

  7. Рассматривается конструкция расширения абстрактной задачи о достижимости, реализуемая с использованием компакта Стоуна (пространство ультрафильтров алгебры множеств в традиционном оснащении). Исследуются вопросы, связанные с построением множеств притяжения; последние определяют возможности в части достижимости желаемых состояний в топологическом пространстве при использовании асимптотических аналогов обычных решений. Предполагаются заданными ограничения асимптотического характера, которые, в частности, могут возникать при ослаблении стандартных ограничений, используемых в задачах управления (естественным прототипом исследуемой абстрактной задачи может служить задача о построении асимптотического аналога области достижимости управляемой системы при исчезающе малом ослаблении тех или иных ограничений на выбор программного управления). Используя естественную модификацию подхода Дж. Варги, можно ввести наряду с точными так называемые приближенные решения в виде последовательностей обычных решений, соблюдающих с "нарастающей точностью" условия, составляющие в своей совокупности "асимптотические ограничения". В ряде случаев таких (секвенциальных) приближенных решений оказывается недостаточно. Требуются направленности или фильтры. Последние используются в настоящей работе в качестве основного типа (асимптотических по существу) решений при построении множеств притяжения в задачах о достижимости с ограничениями асимптотического характера; более того, в этих построениях удается ограничиться использованием ультрафильтров. Для одного частного случая на этой основе установлена конкретная структура множества притяжения.

    The extension construction of the abstract problem of attainability realized with employment of the Stone compactum (the space of ultrafilters in the traditional equipment) is considered. The questions connected with the structure of attraction sets are investigated; these attraction sets define possibilities for attainability of desired states in topological space under employment of asymptotic analogs of usual solutions. Constraints of asymptotic character are given. This constraints can be arising under the weakening of standard constraints used in control theory (the natural prototype of the investigated abstract problem is the problem about the construction of the asymptotic analog of the attainability domain for the control system under vanishingly small weakening of some constraints on the choice of the programmed control). Using the natural modification of Warga approach, we can introduce (along with precise solutions) so-called approximate solutions in the form of sequences of usual solutions satisfying the conditions (realizing in the totality "asymptotic constraints") "with reinforcing exactness". Sometimes, the employment of only such (sequential) approximate solutions can be insufficient. Nets or filters are required. The last objects are used as the basic type of (asymptotic in essence) solutions in this investigation under construction of attraction sets in the attainability problem with constraints of asymptotic character. And what is more, in these constructions, we can confine ourselves to the employment of ultrafilters. For a particular case, on this basis, the concrete structure of attraction set is established.

  8. Рассматривается линейная игровая задача управления на максимин с ограничениями асимптотического характера (ОАХ), которые естественно возникают в связи с реализацией «узких» управляющих импульсов. В содержательном отношении это соответствует импульсным режимам управления с полным расходованием топлива. Возникающая игровая задача отвечает использованию асимптотических режимов управления обоими игроками, что отражено в концепции расширения, реализуемой в классе конечно-аддитивных мер. Исходная содержательная задача управления для каждого из игроков рассматривается как вариант абстрактной постановки, связанной с достижимостью при ОАХ, для которой построена соответствующая обобщенная задача о достижимости и установлено представление множества притяжения (МП), играющее роль асимптотического аналога области достижимости в классической теории управления. Данная конкретизация реализуется для каждого из игроков, на основе чего получается обобщенный максимин, для которого затем указан вариант асимптотической реализации в классе обычных управлений. Получено «конечномерное» описание МП, позволяющее находить упомянутый максимин с применением численных методов. Рассмотрено решение модельного примера задачи об игровом взаимодействии двух материальных точек, включающее этап компьютерного моделирования.

    Chentsov A.G., Savenkov I.I., Shapar J.V.
    A problem of program maximin with constraints of asymptotic nature, pp. 91-110

    We consider a linear game control problem for maximin with asymptotic constraints, which naturally arise in connection with the realization of “narrow” control pulses. In terms of content, this corresponds to pulsed control modes with full fuel consumption. The emerging game problem corresponds to the use of asymptotic control modes by both players, which is reflected in the expansion concept realized in the class of finitely additive measures. The original content control problem for each of the players is considered as a variant of abstract formulation related to attainability under asymptotic constraints, for which the corresponding generalized attainability problem is constructed and the representation of the attraction set playing the role of an asymptotic analogue of an attainability domain in the classical control theory is established. This concretization is realized for each of the players, on the basis of which a generalized maximin is obtained, for which a variant of the asymptotic realization in the class of ordinary controls is indicated. A “finite-dimensional” description of the attraction set is obtained, which makes it possible to find maximin using numerical methods. The solution of a model example of the problem of game interaction of two material points, including the stage of computer modeling, is considered.

  9. Рассматриваются вопросы, связанные с достижимостью по скоростной координате для материальной точки при краевом условии на ее положение в последний момент времени. Исследуется свойство, имеющее смысл устойчивости (с точностью до замыкания) при ослаблении краевого условия. Для этого осуществляется сравнение области достижимости по скорости и множества притяжения, реализуемого в схеме с ужесточением ослабленных ограничений. Типичным оказывается совпадение последнего с замыканием упомянутой области достижимости.

    The questions connected with attainability with respect to the velocity coordinate for mass point under boundary condition on the state in the last time moment are considered. The property of type of a stability (to within the closure) under the weakening of boundary condition is investigated.For this the comparison of the attainability domain with respect to velocity and the natural attraction set is realized. The coincidence of the last set and the closure of the above-mentioned attainability domain is typical.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref