Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'dense set':
Найдено статей: 9
  1. Абдуллаев Б.И., Имомкулов С.А., Шарипов Р.А.
    Структура особых множеств некоторых классов субгармонических функций, с. 519-535

    В данной работе дается обзор результатов об устранимых особых множествах для классов $m$-субгармонических ($m-sh$) и сильно $m$-субгармонических ($sh_m$), а также $\alpha$-субгармонических функций, которые применяются для изучения особых множеств $sh_{m}$ функций. Для сильно $m$-субгармонических функций из класса $L_{loc}^{p}$, доказывается, что множество является устранимым особым множеством, если имеет нулевую $C_{q,s}$-емкость. Доказательство этого утверждения основано на том, что пространство основных функций, с носителем на множестве $D\backslash E$, плотно по $L_{q}^{s}$-норме в пространстве основных функций, определенных на множестве $D$. Аналогичные результаты в случае классических (суб)гармонических функций были изучены в работах Л. Карлесона, Е. Долженко, М. Бланшет, С. Гардинера, Ж. Риихентаус, В. Шапиро, А. Садуллаева и Ж. Ярметова, Б. Абдуллаева и С. Имомкулова.

    Abdullaev B.I., Imomkulov S.A., Sharipov R.A.
    Structure of singular sets of some classes of subharmonic functions, pp. 519-535

    In this paper, we survey the recent results on removable singular sets for the classes of $m$-subharmonic ($m-sh$) and strongly $m$-subharmonic ($sh_m$), as well as $\alpha$-subharmonic functions, which are applied to study the singular sets of $sh_{m}$ functions. In particular, for strongly $m$-subharmonic functions from the class $L_{loc}^{p}$, it is proved that a set is a removable singular set if it has zero $C_{q,s}$-capacity. The proof of this statement is based on the fact that the space of basic functions, supported on the set $D\backslash E$, is dense in the space of test functions defined in the set $D$ on the $L_{q}^{s}$-norm. Similar results in the case of classical (sub)harmonic functions were studied in the works by L. Carleson, E. Dolzhenko, M. Blanchet, S. Gardiner, J. Riihentaus, V. Shapiro, A. Sadullaev and Zh. Yarmetov, B. Abdullaev and S. Imomkulov.

  2. Рассмотрен класс почти периодических по Вейлю функций, для которых множество ε-почти периодов, определяемых с помощью псевдометрики Вейля, относительно плотно при всех ε > 0: Для этого класса функций при некоторых дополнительных ограничениях доказано существование почти периодических сечений многозначных почти периодических отображений.

    We consider a class of Weyl almost periodic functions for which the set of ε-almost the periods defined by means of the Weyl pseudometric is relatively dense for all ε > 0: For this class of functions, under certain additional restrictions we prove the existence of almost periodic selections of almost periodic multivalued maps.

  3. В работе рассматривается пространство Стоуна булевой алгебры подмножеств одного счетного частично упорядоченного множества. Главной особенностью этого множества является наличие бесконечного числа непосредственных последователей у каждого его элемента. Отсюда следует, что каждый фиксированный ультрафильтр данного пространства Стоуна является неизолированной точкой, а подмножество свободных ультрафильтров всюду плотно. В работе дана классификация точек пространства, доказано, что есть свободные ультрафильтры, которые не являются пределами последовательностей фиксированных ультрафильтров, а также свободные ультрафильтры, определяемые цепями частично упорядоченного множества. Рассмотрены кардинальные инварианты подпространства свободных ультрафильтров. Доказано, что это подпространство имеет счетное число Суслина, но не сепарабельно.

     

    Gryzlov A.A., Golovastov R.A.
    On the density and Suslin number of subsets of one Stone space, pp. 18-24

    The paper concerns the Stone space of the Boolean algebra of subsets of one countable partially ordered set. The main feature of this set is the existence of countably many successors of each of its elements. From this property it follows that every fixed ultrafilter of this Stone space is a nonisolated point; the subset of free ultrafilters is dense everywhere. The classification of space points is given; the fact that there are free ultrafilters, which are not limits of sequences of fixed ultrafilters, as well as free ultrafilters determined by chains of partially ordered set, is proved. The cardinal invariants of the subspace of free ultrafilters are considered. It is shown that this subspace has the countable Suslin number, but is not separable.

     


  4. Атамуратов А.А., Расулов К.К.
    О теореме Шимоды, с. 17-31

    Настоящая работа посвящена теореме Шимоды о голоморфности функции $f(z,w)$, которая является голоморфной по $w\in V$ при фиксированном $z\in U$ и голоморфна по $z\in U$ при фиксированном $w\in E$, где $E\subset V$ - счетное множество, по крайней мере, с одной предельной точкой в $V$. Шимода доказывает, что в этом случае $f(z,w)$ голоморфно в $U\times V$, за исключением нигде не плотного замкнутого подмножества $U\times V.$ Рассматривается обратная задача и доказывается, что для любого заранее заданного нигде не плотного замкнутого подмножества $S\subset U$ существует голоморфная функция, удовлетворяющая теореме Шимоды на $U\times V\subset {\mathbb C}^{2}$, не голоморфная на $S\times V$. Кроме того, исследованы дополнительные условия, которые влекут за собой пустые множества особенностей в теореме Шимоды. Доказывается обобщение в случае, когда функция имеет переменный радиус голоморфности по одному из направлений.

    Atamuratov A.A., Rasulov K.K.
    On Shimoda's Theorem, pp. 17-31

    The present work is devoted to Shimoda's Theorem on the holomorphicity of a function $f(z,w)$ which is holomorphic by $w\in V$ for each fixed $z\in U$ and is holomorphic by $z\in U$ for each fixed $w\in E$, where $E\subset V$ is a countable set with at least one limit point in $V$. Shimoda proves that in this case $f(z,w)$ is holomorphic in $U\times V$ except for a nowhere dense closed subset of $U\times V$. We prove the converse of this result, that is for an arbitrary given nowhere dense closed subset of $U$, $S\subset U$, there exists a holomorphic function, satisfying Shimoda's Theorem on $U\times V\subset {\mathbb C}^{2}$, that is not holomorphic on $S\times V$. Moreover, we observe conditions which imply empty exception sets on Shimoda's Theorem and prove generalizations of Shimoda's Theorem.

  5. Грызлов А.А., Головастов Р.А., Бастрыков Е.С.
    Произведения пространств и сходимость последовательностей, с. 563-570

    По теореме Хьюитта–Марчевского–Пондишери тихоновское произведение $2^\omega$ сепарабельных пространств сепарабельно. Мы продолжаем исследовать проблему существования в тихоновском произведении $\prod\limits_{\alpha\in 2^\omega}X_\alpha$ сепарабельных пространств плотного счетного подмножества, не содержащего нетривиальных сходящихся последовательностей. Мы говорим, что последовательность $\lambda=\{x_n\colon n\in\omega\}$ является простой, если для каждого $x_n\in\lambda$ множество $\{n'\in\omega\colon x_{n'}=x_n\}$ конечно. Мы доказываем, что в произведении $\{Z_\alpha\colon\alpha\in 2^\omega\}$ сепарабельных пространств, где всякое $Z_\alpha$ $(\alpha\in\omega)$ содержит простую несходящуюся последовательность, есть счетное плотное множество $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, которое не содержит нетривиальных сходящихся в $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ последовательностей.

    Gryzlov A.A., Golovastov R.A., Bastrykov E.S.
    Products of spaces and the convergence of sequences, pp. 563-570

    By the Hewitt–Marczewski–Pondiczery theorem, the Tychonoff product of $2^\omega$ separable spaces is separable. We continue to explore the problem of the existence in the Tychonoff product $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ of $2^\omega$ separable spaces a dense countable subset, which does not contain non-trivial convergent sequences. We say that a sequence $\lambda=\{x_n\colon n\in\omega\}$ is simple, if, for every $x_n\in\lambda$, a set $\{n'\in\omega\colon x_{n'}=x_n\}$ is finite. We prove that in the product of separable spaces $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, such that $Z_\alpha$ $(\alpha\in 2^\omega)$ contains a simple nonconvergent sequence, there is a countable dense set $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, which does not contain non-trivial convergent in $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ sequences.

  6. Пусть $(U,\rho )$ - полное метрическое пространство, ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, и ${\mathcal R} ({\mathbb R},U)$ - пространства (сильно) измеримых функций $f:{\mathbb R}\to U$, преобразования Бохнера ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ которых являются рекуррентными функциями со значениями в метрических пространствах $L^p([-l,l],U)$ и $L^1([-l,l], (U,\rho ^{ \prime }))$, где $l>0$ и $(U,\rho^{ \prime })$ - полное метрическое пространство с метрикой $\rho ^{ \prime }(x,y)=\min\{ 1, \rho (x,y)\} ,$ $x, y\in U.$ Аналогично определяются пространства ${\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ и ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ функций (многозначных отображений) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ со значениями в полном метрическом пространстве $({\mathrm {cl}}\,_{ b}\, U, {\mathrm {dist}})$ непустых замкнутых ограниченных подмножеств метрического пространства $(U,\rho )$ с метрикой Хаусдорфа ${\mathrm {dist}}$ (при определении многозначных отображений $F\in {\mathcal R} ({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ рассматривается также метрика ${\mathrm {dist}} ^{ \prime }(X,Y)=\min\{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$). Доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ (соответственно $f\in {\mathcal R}^p ({\mathbb R},U)$) многозначных отображений $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (соответственно $F\in {\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$), для которых множества почти периодов подчинены множествам почти периодов многозначных отображений $F$. Для функций $g\in {\mathcal R} ({\mathbb R},U)$ приведены условия существования сечений $f\in {\mathcal R} ({\mathbb R},U)$ и $f\in {\mathcal R}^p ({\mathbb R},U),$ для которых $\rho (f(t),g(t))=\rho (g(t),F(t))$ при п.в. $t\in {\mathbb R}$. В предположении, что для любого $\varepsilon >0$ существует относительно плотное множество общих $\varepsilon $-почти периодов функции $g$ и многозначного отображения $F$, также доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ таких, что $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ при п.в. $t\in {\mathbb R}$, где $\eta :[0,+\infty ) \to [0,+\infty )$ - произвольная неубывающая функция, для которой $\eta (0) =0$ и $\eta (\xi )>0$ при всех $\xi >0$, при этом $f\in {\mathcal R}^p ({\mathbb R},U)$ в случае $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ При доказательстве используется равномерная аппроксимация функций $f\in {\mathcal R} ({\mathbb R},U)$ элементарными функциями из пространства ${\mathcal R} ({\mathbb R},U)$ множества почти периодов которых подчинены множествам почти периодов функций $f$.

     

    Let $(U,\rho )$ be a complete metric space and let ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, and ${\mathcal R} ({\mathbb R},U)$ be the spaces of (strongly) measurable functions $f:{\mathbb R}\to U$ for which the Bochner transforms ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ are recurrent functions with ranges in the metric spaces $L^p([-l,l],U)$ and $L^1([-l,l],(U,\rho ^{ \prime }))$ where $l>0$, and $(U,\rho ^{ \prime })$ is the complete metric space with the metric $\rho ^{ \prime }(x,y)=\min \{ 1,\rho (x,y)\} ,$ $x, y\in U.$ Analogously, we define the spaces ${\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ and ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ of functions (multivalued mappings) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ with ranges in the complete metric space $({\mathrm {cl}}\,_{ b}\, U,{\mathrm {dist}})$ of nonempty closed bounded subsets of the metric space $(U,\rho )$ with the Hausdorff metric ${\mathrm {dist}}$ (while defining the multivalued mappings $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ the metric ${\mathrm {dist}} ^{ \prime }(X,Y)=\min \{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$, is also considered). We prove the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ (accordingly $f\in {\mathcal R}^p({\mathbb R},U)$) of multivalued maps $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (accordingly $F\in {\mathcal R}^p ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$) for which the sets of almost periods are subordinated to the sets of almost periods of multivalued maps $F$. For functions $g\in {\mathcal R} ({\mathbb R},U),$ the conditions for the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ and $f\in {\mathcal R}^p({\mathbb R},U)$ such that $\rho (f(t),g(t))=\rho (g(t),F(t))$ for a.e. $t\in {\mathbb R}$ are obtained. On the assumption that the function $g$ and the multivalued map $F$ have relatively dense sets of common $\varepsilon $-almost periods for all $\varepsilon >0$, we also prove the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ such that $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ for a.e. $t\in {\mathbb R}$, where $\eta :[0,+\infty ) \to [0,+\infty )$ is an arbitrary nondecreasing function for which $\eta (0)=0$ and $\eta (\xi )>0$ for all $\xi >0$, and, moreover, $f\in {\mathcal R}^p({\mathbb R},U)$ if $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ To prove the results we use the uniform approximation of functions $f\in {\mathcal R} ({\mathbb R},U)$ by elementary functions belonging to the space ${\mathcal R} ({\mathbb R},U)$ which have the sets of almost periods subordinated to the sets of almost periods of the functions $f$.

     

  7. Рассматривается процедура встраивания оптимизируемых фрагментов маршрутных решений в глобальные решения «большой» задачи, определяемые эвристическими алгоритмами. Постановка задачи маршрутизации учитывает некоторые особенности инженерной задачи о последовательной резке деталей, имеющих каждая один внешний и, возможно, несколько внутренних контуров. Последние должны подвергаться резке раньше внешнего, что приводит к большому числу условий предшествования. Данные условия активно используются в интересах снижения сложности вычислений. Тем не менее размерность задачи остается достаточно большой, что, в частности, не позволяет применять «глобальное» динамическое программирование и вынуждает к использованию эвристических алгоритмов (исследуемая задача относится к числу труднорешаемых в традиционном понимании). Поэтому представляет интерес разработка методов коррекции решений, получаемых на основе упомянутых алгоритмов. В настоящей работе такая коррекция реализуется посредством замены фрагментов (упомянутых решений), имеющих умеренную размерность, оптимальными «блоками», конструируемыми на основе динамического программирования с локальными условиями предшествования, которые согласуются с ограничениями исходной «большой» задачи. Предлагаемая замена не ухудшает, а, в типичных случаях, улучшает качество исходного «эвристического» решения, что подтверждается вычислительным экспериментом на многоядерной ПЭВМ.

    Предложенный алгоритм реализован в итерационном режиме: полученное после первой вставки на основе динамического программирования решение в виде пары «маршрут-трасса» принимается за исходное, для которого вновь конструируется вставка. При этом начало этой новой вставки выбирается случайно в пределах, определяемых возможностями формирования скользящего «окна» ощутимой, но все же достаточной для применения экономичной версии динамического программирования размерности. Далее процедура повторяется. Работа итерационного алгоритма иллюстрируется решением модельных задач, включая варианты с достаточно плотной «упаковкой» заготовок деталей на листе, что типично для машиностроительного производства.

    Petunin A.A., Chentsov A.G., Chentsov P.A.
    Local dynamic programming incuts in routing problems with restrictions, pp. 56-75

    The article is concerned with the procedure of insertion of optimizable fragments of route solutions into the global solutions of the «big» problem defined by heuristic algorithms. Setting of the route problem takes into account some singularities of the engineering problem about the sequential cutting of details each having one exterior and probably several interior contours. The latter ones must be subjected to cutting previously in comparison with the exterior contour, which leads to a great number of given preceding conditions. These conditions are actively used to decrease the computational complexity. Nevertheless, the problem dimensionality remains sufficiently large that does not permit to use “global’’ dynamic programming and forces heuristic algorithms to be used (the problem under investigation is a hard-solvable problem in the traditional sense). Therefore, it is interesting to develop the methods for correction of solutions based on the above-mentioned algorithms. In the present investigation, such correction is realized by the replacement of fragments (of the above-mentioned solutions) having a moderate dimensionality by optimal “blocks’’ constructed by dynamic programming with local preceding conditions which are compatible with the constraints of the initial “big’’ problem. The proposed replacement does not deteriorate, but, in typical cases, improves the quality of the initial heuristic solution. This is verified by the computing experiment on multi-core computer.

    The proposed algorithm is realized in the iterated regime: the solution (in the form of “route-trace’’) obtained after the first insertion on the basis of dynamic programming is taken as an initial solution for which the insertion is constructed again. In addition, the beginning of the new insertion is chosen randomly in the bounds defined by the possibilities of formation of a sliding “window’’ of the appreciable dimensionality which is in fact sufficient for the employment of the economical version of dynamic programming. Further, the procedure is repeated. The operation of the iterated algorithm is illustrated by solution of model problems including the versions with sufficiently dense “packing’’ of parts on a sheet, which is typical for the engineering production.

  8. Рассматриваются всюду плотные подмножества произведений топологических пространств. Доказано, что в произведении $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ где $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ сепарабельных пространств существуют счетные всюду плотные множества такие, что всякие счетные их подмножества имеют проекции на грани, обладающие дополнительными свойствами. Это позволяет доказать ряд фактов о всюду плотных множествах, в частности отсутствие сходящихся последовательностей, оценивать характер замкнутых подмножеств произведений.

    Gryzlov A.A.
    On projections of products of spaces, pp. 409-413

    We consider dense sets of products of topological spaces. We prove that in the product $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ where $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ there are dense sets such that their countable subsets have projections with additional properties. These properties entail that these dense sets contain no convergent sequences. By these properties we prove that the character of closed sets of the product is uncountable.

  9. Пусть $V$ — сепарабельное рефлексивное банахово пространство, непрерывно вложенное в гильбертово пространство $H$ и плотное в нем; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ — заданное множество управлений; $A\colon X\to X^*$ — заданный вольтерров оператор, радиально непрерывный, мотонный и коэрцитивный (вообще говоря, нелинейный). Для задачи Коши, связанной с управляемым эволюционным уравнением вида \[x^\prime+Ax=f[u](x),\quad x(0)=a\in H;\quad x\in W=\{ x\in X\colon x^\prime\in X^*\},\] где $u\in U$ — управление, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ — вольтерров оператор ($W\subset\mathbf{C}(0,T;H)$), доказана тотально (по множеству допустимых управлений) глобальная разрешимость при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее для случая линейного оператора $A$ и $V=H=V^*$. Отдельно рассматриваются случаи компактного вложения пространств, усиления условия монотонности и совпадения тройки пространств $V=H=H^*$. В последних двух случаях доказывается также единственность решения. В первом случае применяется теорема Шаудера, в остальных — технология продолжения решения по времени (то есть продолжения вдоль вольтерровой цепочки). Приводятся конкретные примеры задания оператора $A$.

    Let $V$ be a separable reflexive Banach space being embedded continuously in a Hilbert space $H$ and dense in it; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ be a given set of controls; $A\colon X\to X^*$ be a given Volterra operator which is radially continuous, monotone and coercive (and, generally speaking, nonlinear). For the Cauchy problem associated with controlled evolutionary equation as follows $$x^\prime+Ax=f[u](x),\quad x(0)=a\in H;\quad x\in W=\{x\in X\colon x^\prime\in X^*\},$$ where $u\in U$ is a control, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ is Volterra operator ($W\subset\mathbf{C}(0,T;H)$), we prove totally (with respect to a set of admissible controls) global solvability subject to global solvability of some functional integral inequality in the space $\mathbb{R}$. In many particular cases the above inequality may be realized as the Cauchy problem associated with an ordinary differential equation. In fact, a similar result proved by the author earlier for the case of linear operator $A$ and identity $V=H=V^*$ is developed. Separately, we consider the cases of compact embedding of spaces, strengthening of the monotonicity condition and coincidence of the triplet of spaces $V=H=H^*$. As to the last two cases, we prove also the uniqueness of the solution. In the first case we use Schauder theorem and in the last two cases we apply the technique of continuation of solution along with the time axis (i.e., continuation along with a Volterra chain). Finally, we give some examples of an operator $A$ satisfying our conditions.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref