Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'difference-differential equations':
Найдено статей: 24
  1. Исследуется воздействие аддитивных и параметрических шумов на аттракторы одномерной системы, задаваемой стохастическим дифференциальным уравнением Ито. Показано, что в отличие от аддитивных, параметрические возмущения приводят к сдвигу экстремумов функции плотности распределения. Для величины такого сдвига получено разложение по малому параметру интенсивности шума. Показано, что воздействие параметрического шума может изменить не только расположение, но и количество экстремумов плотности распределения. Подробный анализ соответствующих индуцированных шумами явлений проведен для трех динамических моделей. Сравнение погрешности приближений разного порядка для оценки сдвига экстремумов функции плотности представлено на примере линейной модели. Два сценария перехода между унимодальной и бимодальной формами стохастического аттрактора исследованы для систем с разными типами кубической нелинейности.

    The influence of additive and parametrical noise on attractors of the one-dimensional system governed by the stochastic differential Ito equation is investigated. It is shown that unlike additive, parametrical disturbances lead to the shift of extrema of probability density function. For the value of this shift, a decomposition on small parameter of noise intensity is obtained. It is shown that the influence of the parametrical noise can change not only the arrangement, but also the quantity of extrema of probability density function. The corresponding noise-induced phenomena are studied for three dynamical models in detail. An analysis of the error for the different order estimations of the shift of extrema for the probability density function is presented by the example of a linear model. Two scenarios of the transition between unimodal and bimodal forms of the stochastic attractor are investigated for systems with different types of cubic nonlinearity.

  2. В прямоугольной области исследуются нелокальные краевые задачи для одномерного нестационарного уравнения конвекции-диффузии дробного порядка с переменными коэффициентами, описывающие диффузионный перенос той или иной субстанции, а также перенос, обусловленный движением среды. Методом энергетических неравенств выводятся априорные оценки решений нелокальных краевых задач в дифференциальной форме. Построены разностные схемы, и для них доказываются аналоги априорных оценок в разностной форме, приводятся оценки погрешности в предположении достаточной гладкости решений уравнений. Из полученных априорных оценок следуют единственность и устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью $O(h^2+\tau^2)$.

    In the rectangular region, we study nonlocal boundary value problems for the one-dimensional unsteady convection-diffusion equation of fractional order with variable coefficients, describing the diffusion transfer of a substance, as well as the transfer due to the motion of the medium. A priori estimates of solutions of nonlocal boundary value problems in differential form are derived by the method of energy inequalities. Difference schemes are constructed and analogs of a priori estimates in the difference form are proved for them, error estimates are given under the assumption of sufficient smoothness of solutions of equations. From the obtained a priori estimates, the uniqueness and stability of the solution from the initial data and the right part, as well as the convergence of the solution of the difference problem to the solution of the corresponding differential problem at the rate of $O(h^2+\tau^2)$.

  3. Изучается вариационный подход к постановке и решению задачи приближения функций квазиполиномами  решениями однородных, автономных линейных разностных или дифференциальных уравнений.

    Egorshin A.O.
    On one variational smoothing problem, pp. 9-22

    We study the variational approach to setting and solving of the function approximating problem by quasipolynomials which are the solutions of the homogeneous autonomous linear difference or differential equations.

  4. Работа посвящена построению приближенных решений краевых задач в прямоугольнике для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя, выступающих в качестве математических моделей движения влаги и солей в почвах с фрактальной организацией. Построены разностные схемы для дифференциальных задач. Методом энергетических неравенств выведены априорные оценки решений рассматриваемых задач в дифференциальной и разностной трактовках. Из полученных априорных оценок следуют единственность, устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью, равной порядку погрешности аппроксимации. Построен алгоритм численного решения разностных схем, полученных при аппроксимации краевых задач для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя. Проведены численные эксперименты, иллюстрирующие полученные в работе теоретические выкладки.

    The paper is devoted to the construction of approximate solutions of boundary value problems in a rectangle for a loaded modified fractional-order moisture transfer equation with the Bessel operator, which act as mathematical models of the movement of moisture and salts in soils with fractal organization. Difference schemes for differential problems are constructed. The method of energy inequalities is used to derive a priori estimates of solutions to the problems under consideration in differential and difference interpretations. The obtained a priori estimates are followed by uniqueness, stability of the solution from the initial data and the right part, as well as convergence of the solution of the difference problem to the solution of the corresponding differential problem with a speed equal to the order of approximation error. An algorithm for the numerical solution of difference schemes obtained by approximating boundary value problems for a loaded modified fractional-order moisture transfer equation with the Bessel operator is constructed.

  5. Работа посвящена рассмотрению качественно новых уравнений влагопереноса, которые являются обобщением уравнения Аллера и уравнения Аллера-Лыкова. Данное обобщение дает возможность отражения в характере исходных уравнений специфических особенностей изучаемых массивов, их структуры, физических свойств, протекающих в них процессов посредством введения понятия фрактальной скорости изменения влажности. Для этих уравнений с дробной по времени производной Римана-Лиувилля с краевыми условиями первого рода получены решения системы разностных уравнений с постоянными коэффициентами, возникающих при использовании метода прямых. Получены априорные оценки, из которых следует сходимость решений систем обыкновенных дифференциальных уравнений с переменными коэффициентами дробного порядка. На тестовых примерах проведены численные эксперименты, подтверждающие теоретические результаты, полученные в работе.

    The paper studies qualitatively new equations of moisture transfer, which generalize the Aller and Aller-Lykov equations. The generalization contributes to revealing in the original equations the specific features of the studied massifs, their structure, physical properties, processes occurring in them through the introduction of the notion of the rates of change of the fractal dimension. We have obtained solutions to the constant coefficient difference equations as a system arising when using the method of lines for the equations with a Riemann-Liouville time fractional derivative with boundary conditions of the first kind. A priori estimates are obtained that imply convergence of the obtained solutions to systems of ordinary differential equations with variable fractional coefficients. Numerical tests have been carried out to confirm theoretical results of the study.

  6. Изучается начально-краевая задача для многомерного псевдопараболического уравнения с переменными коэффициентами и граничными условиями третьего рода. Многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром. Показано, что при стремлении малого параметра к нулю решение полученной модифицированной задачи сходится к решению исходной задачи. Для приближенного решения полученной задачи строится локально-одномерная разностная схема А. А. Самарского. Методом энергетических неравенств получена априорная оценка, откуда следуют единственность, устойчивость и сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи. Для двумерной задачи построен алгоритм численного решения начально-краевой задачи для псевдопараболического уравнения с условиями третьего рода.

    We study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.

  7. Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,Ln. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса yE. Критерий аппроксимации  минимум величины ||yŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами αωSEn+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора yE есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.

     

    Some properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients  αωSEn+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.

     

  8. Для задачи оптимального управления системой обыкновенных дифференциальных уравнений с поточечным фазовым ограничением типа равенства и конечным числом функциональных ограничений типа равенства и неравенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собою регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации.

    The stable sequential Pontryagin maximum principle or, in other words, the regularized Pontryagin maximum principle in iterative form is formulated for the optimal control problem of a system of ordinary differential equations with pointwise phase equality constraint and a finite number of functional equality and inequality constraints. The main difference between it and the classical Pontryagin maximum principle is that, firstly, it is formulated in terms of minimizing sequences, secondly, the iterative process occurs in dual space and, thirdly, it is resistant to errors of raw data and gives a minimizing approximate solution in the sense of J. Warga. So it is a regularizing algorithm. The proof of the regularized Pontryagin maximum principle in iterative form is based on the methods of dual regularization and iterative dual regularization.

  9. В этой статье мы предлагаем новый метод численной аппроксимации для решения единственного решения нелинейного интегро-дифференциального уравнения Вольтерра. Нас интересует особая форма этого уравнения, в которой производная искомого решения появляется под знаком интеграла нелинейным образом. Наше видение основано на двух разных подходах: мы используем метод Нистрёма для преобразования интеграла в конечную сумму, используя формулу численного интегрирования, затем мы используем метод численной обратной разностной производной для приближения к производной нашего решения. Такое сопоставление двух разных методов, первого результата численной обработки интегральных уравнений и второго результата численной обработки дифференциальных уравнений, дает новую нелинейную систему для приближения к решению нашего уравнения. Мы показываем, что система имеет единственное решение и что это численное решение идеально сходится к нашему решению. Раздел посвящен численным тестам, в которых мы показываем эффективность нашего нового видения по сравнению с двумя методами, основанными только на численном интегрировании.

    Guebbai H., Lemita S., Segni S., Merchela W.
    Difference derivative for an integro-differential nonlinear Volterra equation, pp. 176-188

    In this article, we propose a new numerical approximation method to deal with the unique solution of the nonlinear integro-differential Volterra equation. We are interested in a very particular form of this equation, in which the derivative of the sought solution appears under the integral sign in a nonlinear manner. Our vision is based on two different approaches: We use the Nyström method to transform the integral into a finite sum using a numerical integration formula, then we use the numerical backward difference derivative method to approach the derivative of our solution. This collocation between two different methods, the first outcome of the numerical processing of integral equations and the second outcome of the numerical processing of differential equations, gives a new nonlinear system for approaching the solution of our equation. We show that the system has a unique solution and that this numerical solution converges perfectly to our solution. A section is dedicated to numerical tests, in which we show the effectiveness of our new vision compared to two methods based only on numerical integration.

  10. Работа посвящена исследованию второй начально-краевой задачи для дифференциального уравнения третьего порядка псевдопараболического типа с переменными коэффициентами в многомерной области с произвольной границей. Рассматриваемое многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром и для полученного уравнения строится локально-одномерная разностная схема А.А. Самарского. С помощью принципа максимума получена априорная оценка решения локально-одномерной разностной схемы в равномерной метрике в норме $C$. Доказаны устойчивость и сходимость локально-одномерной разностной схемы.

    The work is devoted to the study of the second initial-boundary value problem for a general-form third-order differential equation of pseudoparabolic type with variable coefficients in a multidimensional domain with an arbitrary boundary. In this paper, a multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter, and a locally one-dimensional difference scheme by A.A. Samarskii is used. Using the maximum principle, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme in the uniform metric in the $C$ norm. The stability and convergence of the locally one-dimensional difference scheme are proved.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref