Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В данной статье изучена задача Келдыша для трехмерного уравнения смешанного типа с тремя сингулярными коэффициентами в полубесконечном параллелепипеде. На основании свойства полноты систем собственных функций двух одномерных спектральных задач доказана теорема единственности. Для доказательства существования решения задачи использован спектральный метод Фурье, основанный на разделении переменных. Решение поставленной задачи построено в виде суммы двойного ряда Фурье-Бесселя. При обосновании равномерной сходимости построенного ряда использованы асимптотические оценки функций Бесселя действительного и мнимого аргумента. На их основе получены оценки для каждого члена ряда, позволившие доказать сходимость ряда и его производных до второго порядка включительно, а также теорему существования в классе регулярных решений.
задача Келдыша, уравнение смешанного типа, спектральный метод, сингулярный коэффициент, функция БесселяThis article studies the Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients in a semi-infinite parallelepiped. Based on the completeness property of eigenfunction systems of two one-dimensional spectral problems, the uniqueness theorem is proved. To prove the existence of a solution to the problem, the Fourier spectral method based on the separation of variables is used. The solution to this problem is constructed in the form of a sum of a double Fourier-Bessel series. In substantiating the uniform convergence of the constructed series, we used asymptotic estimates of the Bessel functions of the real and imaginary argument. Based on them, estimates were obtained for each member of the series, which made it possible to prove the convergence of the series and its derivatives to the second order inclusive, as well as the existence theorem in the class of regular solutions
-
В настоящей работе сформулирована, поставлена и решена обратная граничная задача теплопроводности, при условии, что коэффициент теплопроводности является кусочно-постоянным. Эта задача занимает важное место в технике, так как теплонагруженные узлы технических конструкций покрывают теплоизолирующим слоем, термические характеристики которого сильно отличаются от термических характеристик самой конструкции. Подобные задачи находят свое применение при планировании стендовых испытаний летательных аппаратов. Современные композитные материалы решают эту проблему, предоставляя разработчикам целый ряд преимуществ. В ракетных двигателях внутреннюю стенку камеры внутреннего сгорания покрывают теплозащитным слоем, который изготавливают из композитных материалов. Благодаря свойствам этих материалов теплозащитный слой значительно снижает температуру стенки внутреннего сгорания. При решении обратной граничной задачи необходимо учитывать разницу коэффициентов теплопроводности составных частей композитных материалов, из которых изготавливают стенку камеры. Задача исследовалась с помощью ряда Фурье по собственным функциям для уравнения с разрывным коэффициентом. Доказано, что для решения обратной задачи применимо преобразование Фурье по переменной времени. Для решения обратной задачи использовано преобразование Фурье, позволяющее свести обратную задачу к операторному уравнению, которое было решено методом невязки.
метод проекционной регуляризации, обратная задача теплопроводности, кусочно-постоянный коэффициент теплопроводностиIn the present paper, an inverse boundary value problem of thermal conduction is formulated, posed and solved, provided that the thermal diffusivity is piecewise constant. This task holds a prominent place in technology, since thermally loaded units of technical constructions are covered with a heat insulating layer, the thermal characteristics of which are very different from the thermal characteristics of the structure itself. Such tasks are used in the planning of bench tests of aircraft. Modern composite materials solve this problem, giving developers a number of advantages. In rocket engines, the inner wall of the internal combustion chamber is covered with a heat-shielding layer, which is made of composite materials. Due to the properties of these materials, the heat-shielding layer significantly reduces the temperature of the internal combustion wall. When solving an inverse boundary problem, it is necessary to take into account the difference in the thermal conductivity coefficients of the component parts of composite materials, which make the wall of the chamber. The problem was investigated using a Fourier series in eigenfunctions for an equation with a discontinuous coefficient. It is proved that for the solution of the inverse problem the Fourier transform with respect to $t$ is applicable. To solve the inverse problem, the Fourier transform was used, which made it possible to reduce the inverse problem to the operator equation, which was solved by the discrepancy method.
-
Базисность системы собственных функций дифференциального оператора второго порядка с инволюцией, с. 183-196В настоящей работе мы изучаем спектральную задачу для дифференциального оператора второго порядка с инволюцией и с краевыми условиями типа Дирихле. Построена функция Грина изучаемой краевой задачи. Получены равномерные оценки функций Грина рассматриваемых краевых задач. Установлена равносходимость разложений произвольной функции из класса $L_{1}(-1,1)$ по собственным функциям двух дифференциальных операторов второго порядка с инволюцией с краевыми условиями типа Дирихле. Мы используем интегральный метод, основанный на функции Грина дифференциального оператора второго порядка с инволюцией и со спектральным параметром. Как следствие из доказанной теоремы о равносходимости разложений по собственным функциям, мы доказываем базисность в пространстве $L_{2}(-1,1)$ собственных функций спектральной задачи с непрерывным комплекснозначным коэффициентом $q(x).$
Basis property of a system of eigenfunctions of a second-order differential operator with involution, pp. 183-196In the present paper we study the spectral problem for the second-order differential operators with involution and boundary conditions of Dirichlet type. The Green's function of this boundary problem is constructed. Uniform estimates of the Green's functions for the boundary value problems considered are obtained. The equiconvergence of eigenfunction expansions of two second-order differential operators with involution and boundary conditions of Dirichlet type for any function in $L_{2}(-1,1)$ is established. We use an integral method based on the application of the Green's function of a differential operator with involution and spectral parameter. As a corollary from the equiconvergence theorem, it is proved that the eigenfunctions of the spectral problem form the basis in $L_{2}(-1,1)$ for any continuous complex-valued coefficient $q(x)$.
-
В настоящей работе исследуется двумерная краевая задача типа Стеклова для оператора Ламэ в полуполосе, которая является предельной для сингулярно возмущенной краевой задачи в полуполосе с малым отверстием. Доказана теорема о существовании собственных элементов исследуемой краевой задачи. В частности, получены оценки для собственных значений, выраженные через постоянные Ламэ и параметр, определяющий ширину полуполосы, а также уточнена структура соответствующих собственных вектор-функций, определяющая их поведение при удалении от основания полуполосы. Более того, найдены явные выражения собственных значений предельной краевой задачи с точностью до решения системы алгебраических уравнений. Результаты, полученные в данной работе, позволят построить и строго обосновать асимптотическое разложение собственного значения сингулярно возмущенной краевой задачи в полуполосе с малым отверстием с точностью до степени малого параметра, характеризующего размер отверстия.
On eigenelements of a two-dimensional Steklov-type boundary value problem for the Lamé operator, pp. 54-65In this paper, we study a two-dimensional Steklov-type boundary value problem for the Lamé operator in a half-strip, which is the limiting problem for a singularly perturbed boundary-value problem in a half-strip with a small hole. A theorem on the existence of eigenelements of the boundary value problem under study is proved. In particular, we obtain estimates for the eigenvalues expressed in terms of the Lamé constants and a parameter that determines the width of the half-strip, and refine the structure of the corresponding eigenfunctions, which determines their behavior as their argument move away from the base of the half-strip. Moreover, explicit expressions for the eigenvalues of the limiting boundary value problem are found up to the solution of a system of algebraic equations. The results obtained in this paper will make it possible to construct and rigorously justify an asymptotic expansion of the eigenvalue of a singularly perturbed boundary value problem in a half-strip with a small round hole in powers of a small parameter that determines the diameter of the hole.
-
Математическое моделирование композиционных материалов играет важную роль в современной технике, а решение и исследование обратных граничных задач теплообмена невозможно без использования систем собственных функций задачи Штурма-Лиувилля для дифференциального уравнения с разрывными коэффициентами. Одним из важнейших свойств таких систем является их полнота в соответствующих пространствах. Это свойство систем позволяет доказать теоремы существования и единственности как для прямых задач, так и обратных граничных задач теплопроводности, а также обосновать численные методы решения таких задач. В настоящей статье доказана полнота в пространстве $L_2[r_0,r_2]$ задачи Штурма-Лиувилля для дифференциального оператора второго порядка с разрывным коэффициентом. Эта задача возникает при исследовании и решении обратной граничной задачи теплопроводности для полого шара, состоящего из двух шаров с различными коэффициентами температуропроводности. Доказана самосопряженность, инъективность, а также положительная определенность этого оператора.
система собственных функций, задача Штурма—Лиувилля, композиционные материалы, обратные граничные задачи
Completeness of the system of eigenfunctions of the Sturm-Liouville problem with the singularity, pp. 59-63Mathematical modeling of composite materials plays an important role in modern technology, and the solution and study of inverse boundary value problems of heat transfer is impossible without the use of systems of eigenfunctions of the Sturm-Liouville problem for the differential equation with discontinuous coefficients. One of the most important properties of such systems is their completeness in the corresponding spaces. This property of systems allows to prove theorems of existence and uniqueness of both direct problems and inverse boundary value problems of thermal conductivity, and also to prove numerical methods of solving such problems. In this paper, we prove the completeness of the Sturm-Liouville problem in the space $L_2[r_0,r_2]$ for a second-order differential operator with a discontinuous coefficient. This problem arises when investigating and solving the inverse boundary problem of thermal conductivity for a hollow ball consisting of two balls with different temperature conductivity coefficients. Self-conjugacy, injectivity, and positive definiteness of this operator are proved.
-
В этой статье рассматриваются обратные задачи для уравнения гиперболического вида четвертого порядка с инволюцией. Существование и единственность решения изучаемых обратных задач устанавливается методом разделения переменных. Для применения метода разделения переменных доказываем базисность Рисса собственных функций дифференциального оператора четвертого порядка с инволюцией в пространстве ${{L}_{2}}(-1,1)$. При доказательстве теорем о существовании и единственности решения широко используем неравенство Бесселя для коэффициентов разложений в ряд Фурье в пространстве ${{L}_{2}}(-1,1)$. Показана существенная зависимость существования решения от коэффициента уравнения $\alpha$. В каждом из случаев $\alpha <-1$, $\alpha >1$, $-1<\alpha <1$ выписаны представления решений в виде рядов Фурье по собственным функциям краевых задач для уравнения четвертого порядка с инволюцией.
дифференциальные уравнения с инволюцией, обратная задача, собственное значение, собственная функция, метод ФурьеThis article considers inverse problems for a fourth-order hyperbolic equation with involution. The existence and uniqueness of a solution of the studied inverse problems is established by the method of separation of variables. To apply the method of separation of variables, we prove the Riesz basis property of the eigenfunctions for a fourth-order differential operator with involution in the space ${{L}_{2}}(-1,1)$. For proving theorems on the existence and uniqueness of a solution, we widely use the Bessel inequality for the coefficients of expansions into a Fourier series in the space ${{L}_{2}}(-1,1)$. A significant dependence of the existence of a solution on the equation coefficient $\alpha$ is shown. In each of the cases $\alpha <-1$, $\alpha >1$, $-1<\alpha<1$ representations of solutions in the form of Fourier series in terms of eigenfunctions of boundary value problems for a fourth-order equation with involution are written out.
-
Cуществование майорановских локализованных состояний в простой модели перехода Джозефсона, с. 351-362Последние 15 лет в физической литературе активно изучаются майорановские локализованные состояния (МЛС) и сопутствующие их возникновению явления, такие, как изменение кондактанса и эффект Джозефсона, что обусловлено вероятным применением МЛС при создании квантового компьютера. В статье изучены собственные функции одномерного оператора Боголюбова-де Жена с дельтаобразным потенциалом в нуле, описывающие локализованные состояния с энергией в лакуне спектра (сверхпроводящей щели). Найдены вероятности прохождения в задаче рассеяния для этого оператора, когда энергии близки к границе сверхпроводящей щели. Эти задачи исследовались как для единого на всей прямой сверхпроводящего порядка, определяемого вещественной константой $\Delta,$ так и для сверхпроводящего порядка, определяемого функцией $\Delta \theta (-x)+\Delta e^{i\varphi} \theta (x)$ для $\varphi=0,\pi$ (т.е. для нулевого сверхпроводящего тока и тока, близкого к критическому). Используемый гамильтониан можно рассматривать как простейшую модель перехода Джозефсона. Доказано, что в обоих случаях существуют два МЛС, но лишь при определенных значениях параметров, т.е. МЛС неустойчивы. При этом вероятность прохождения равна нулю в обоих случаях.
гамильтониан Боголюбова-де Жена, функция Грина, спектр, собственное значение, задача рассеяния, вероятность прохождения, майорановские локализованные состояния, эффект ДжозефсонаFor the last 15 years, Majorana bounded states (MBSs) and associated phenomena, such as variation of conductance and the Josephson effect, have been actively studied in the physical literature. Research in this direction is motivated by a highly probable use of MBSs in quantum computing. The article studies the eigenfunctions of the one-dimensional Bogolyubov-de Gennes operator with a delta-shaped potential at zero, describing localized states with energy in the spectral gap (superconducting gap). The transmission probabilities are found in the scattering problem for this operator, when the energies are close to the boundary of the superconducting gap. These problems are studied both for a superconducting order that is the only one on the whole straight line and is defined by the real constant $\Delta,$ and for a superconducting order defined by the function $\Delta\theta(-x)+\Delta e^{i\varphi}\theta(x)$ for $\varphi=0,\pi$ (i.e., for zero superconducting current and for current close to critical). The Hamiltonian used can be considered as the simplest model of the Josephson junction. It is proved that in both cases there are two MBSs, but with certain values of the parameters, i.e., MBSs are unstable. Moreover, the probability of passage is zero in both cases.
-
В данной статье для одного дифференциального уравнения в частных производных высокого четного порядка с оператором Бесселя в прямоугольной области сформулированы две нелокальные начально-граничные задачи. Исследована корректность одной из поставленных задач. При этом применением метода разделения переменных к изучаемой задаче получена спектральная задача для обыкновенного дифференциального уравнения высокого четного порядка. Доказана самосопряженность последней задачи, откуда следует существование системы ее собственных функций, а также ортонормированность и полнота этой системы. Далее, построена функция Грина спектральной задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром. С помощью этого интегрального уравнения и теоремы Мерсера исследована равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Доказана равномерная сходимость этого ряда, а также рядов, полученных из него почленным дифференцированием. Методом спектрального анализа доказана единственность решения задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.
дифференциальное уравнение четного порядка, нелокальная задача, функция Грина, интегральное уравнение
On the solvability of nonlocal initial-boundary value problems for a partial differential equation of high even order, pp. 240-255In the present paper, two non-local initial-boundary value problems have been formulated for a partial differential equation of high even order with a Bessel operator in a rectangular domain. The correctness of one of the considered problems has been investigated. To do this, applying the method of separation of variables to the problem under consideration, the spectral problem was obtained for an ordinary differential equation of high even order. The self-adjointness of the last problem was proved, which implies the existence of the system of its eigenfunctions, as well as orthonormality and completeness of this system. Further, the Green's function of the spectral problem was constructed, with the help of which it was equivalently reduced to the Fredholm integral equation of the second kind with symmetrical kernel. Using this integral equation and Mercer's theorem, the uniform convergence of some bilinear series depending on found eigenfunctions has been studied. The order of the Fourier coefficients was established. The solution of the considered problem has been written as the sum of a Fourier series with respect to the system of eigenfunctions of the spectral problem. The uniform convergence of this series and also the series obtained from it by term-by-term differentiation was proved. Using the method of spectral analysis, the uniqueness of the solution of the problem was proved. An estimate for the solution of the problem was obtained, from which its continuous dependence on the given functions follows.
-
В статье рассматривается оператор Штурма-Лиувилля с вещественным квадратично интегрируемым потенциалом. Граничные условия являются неразделенными. В одно из этих граничных условий входит квадратичная функция спектрального параметра. Изучены некоторые спектральные свойства оператора. Доказаны вещественность и отличность от нуля собственных значений и отсутствие присоединенных функций к собственным функциям, выведена асимптотическая формула для спектра оператора и получено представление характеристической функции в виде бесконечного произведения. Результаты статьи играют важную роль при решении обратных задач спектрального анализа для дифференциальных операторов.
оператор Штурма-Лиувилля, неразделенные граничные условия, собственные значения, бесконечное произведениеThe article considers the Sturm-Liouville operator with a real quadratically integrable potential. Boundary conditions are non-separated. One of these boundary conditions includes the quadratic function of the spectral parameter. Some spectral properties of the operator are studied. It is proves that eigenvalues are real and non-zero and there are no associated functions to the eigenfunctions. An asymptotic formula for the spectrum of the operator is derived, and a representation of the characteristic function as an infinite product is obtained. The results of the paper play an important role in solving inverse problems of spectral analysis for differential operators.
-
В настоящее время продолжают активно изучаться неэрмитовы топологические системы. В данной статье в строгом подходе изучена одна из ключевых неэрмитовых систем — модель Хатано–Нельсона $H$. Найдена функция Грина для этого гамильтониана. С помощью функции Грина аналитически получены собственные значения и собственные функции $H$ для конечных и полубесконечных цепей, а также для бесконечной цепи с локальным потенциалом. Обсуждается неэрмитов скин-эффект для упомянутых выше моделей. Также описана граница между локализованными и резонансными состояниями (при нулевой энергии — это граница между неэрмитовыми топологическими фазами).
At present, non-Hermitian topological systems continue to be actively studed. In a rigorous approach, we study one of the key non-Hermitian systems — the Hatano–Nelson model $H$. We find the Green function for this Hamiltonian. Using the Green function, we analytically obtain the eigenvalues and eigenfunctions of $H$ for finite and semi-infinite chains, as well as for an infinite chain with a local potential. We discuss the non-Hermitian skin effect for the models mentioned above. We also describe the boundary between localized and resonant eigenfunctions (for the zero spectral parameter, this is the boundary between non-Hermitian topological phases).
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.