Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В параметрическом семействе подпространств пространства прерывистых функций вводится понятие присоединенного интеграла (в каждом подпространстве применяется собственный интеграл). В подпространстве, представляющем их пересечение, также определено понятие присоединенного интеграла. Это подпространство содержит в себе пространство функций ограниченной вариации. В каждом подпространстве на основе присоединенного интеграла определяется понятие обобщенной прерывистой функции и ее присоединенной обобщенной производной. Доказана разрешимость линейных импульсных систем, заданных в терминах присоединенных обобщенных функций.
On solvability of impulse systems, pp. 3-18In parametrical family of subspaces of space of regulated functions the concept of the adjoint integral (in everyone subspace own integral is applied) is defined. In subspace, representing their crossing, the concept of the adjoint integral also is defined. This subspace includes the space of functions of the bounded variation. In any subspace on the basis of the adjoint integral the concept of the generalized regulated function and its adjoint generalized derivative is defined. Solvability of linear impulse systems in terms of adjoint generalized functions is proved.
-
Работа посвящена исследованию свойства интегральной разделенности линейных систем с дискретным временем. Согласно определению система $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ называется системой с интегральной разделенностью, если она имеет фундаментальную систему решений $x^1(\cdot),\ldots,x^n(\cdot)$ такую, что при некоторых $\gamma>0$, $a>1$ и всех натуральных $m>s$, $i\leqslant n-1$ выполнены неравенства $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ Понятие интегральной разделенности систем с непрерывным временем было введено Б.Ф. Быловым в 1965 году. Доказаны критерии интегральной разделенности систем с дискретным временем: приводимость к диагональному виду с интегрально разделенной диагональю; устойчивость и некратность показателей Ляпунова. Подробно исследовано также свойство диагонализируемости систем с дискретным временем. Доказательства учитывают специфику этих систем.
линейная система с дискретным временем, показатели Ляпунова, интегральная разделенность, диагонализируемостьThis paper is devoted to the study of the property of an integral separation of discrete time-varying linear systems. By definition, the system $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ is called a system with integral separation if it has a basis of solutions $x^1(\cdot),\ldots,x^n(\cdot)$ such that for some $\gamma>0$, $a>1$ and all natural $m>s$, $i\leqslant n-1$ the inequalities $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ are satisfied. The concept of integral separation of systems with continuous time was introduced by B.F. Bylov in 1965. The criteria for the integral separation of systems with discrete time are proved: reducibility to diagonal form with an integrally separated diagonal; stability and nonmultiplicity of Lyapunov exponents. The property of diagonalizability of discrete-time systems is also studied in detail. The evidence takes into account the specifics of these systems.
-
Обсуждаются вопросы построения допустимых управлений в одной задаче оптимального управления нелинейной динамической системой при наличии ограничений на ее текущее фазовое состояние. Рассматриваемая динамическая система описывает управляемое движение ракеты-носителя от точки старта до момента ее выхода на заданную околоземную эллиптическую орбиту. Задача заключается в построении программного управления, которое обеспечивает выведение ракетой-носителем на орбиту полезной нагрузки максимальной массы и выполнение дополнительных ограничений на текущее фазовое состояние системы. Дополнительные ограничения обусловлены необходимостью учитывать величины скоростного напора, углов атаки и скольжения при движении ракеты в плотных слоях атмосферы и осуществлять падение ее отделяемых частей в заданные районы на земной поверхности. Для ракет-носителей ряда классов такая задача равносильна нелинейной задаче быстродействия с фазовыми ограничениями. Предлагаются и численно исследуются два алгоритма построения в этой задаче допустимых управлений, обеспечивающих выполнение указанных дополнительных фазовых ограничений. Методологическую основу одного алгоритма составляет применение некоторого прогнозирующего управления, которое априори строится в задаче быстродействия без учета в ней дополнительных ограничений, а другого - использование специальных режимов управления. Приводятся результаты численного моделирования.
динамическая система, итерационный метод, нелинейная управляемая система, оптимальное управление, прогнозирующее управление, задача быстродействия, фазовые ограничения, допустимое управлениеThe questions of constructing admissible controls in a problem of optimal control of a nonlinear dynamic system under constraints on its current phase state are discussed. The dynamic system under consideration describes the controlled motion of a carrier rocket from the launching point to the time when the carrier rocket enters a given elliptic earth orbit. The problem consists in designing a program control for the carrier rocket that provides the maximal value of the payload mass led to the given orbit and the fulfillment of a number of additional restrictions on the current phase state of the dynamic system. The additional restrictions are due to the need to take into account the values of the dynamic velocity pressure, the attack and slip angles when the carrier rocket moves in dense layers of the atmosphere. In addition it is required to provide the fall of detachable parts of the rocket into specified regions on the earth surface. For carrier rockets of some classes, such a problem is equivalent to a nonlinear time-optimal problem with phase constraints. Two algorithms for constructing admissible controls ensuring the fulfillment of additional phase constraints are suggested. The numerical analysis of these algorithms is performed. The methodological basis of one algorithm is the application of some predictive control, which is constructed without taking into account the constraints above. Another algorithm is based on special control modes. The results of numerical modeling are presented.
-
Рассмотрено применение барицентрического метода для численного решения задач Дирихле и Неймана для уравнения Гельмгольца в ограниченной односвязной области $\Omega\subset\mathbb{R}^2$. Основное допущение в решении заключается в задании границы $\Omega$ в кусочно-линейном представлении. Отличительная особенность барицентрического метода состоит в порядке формирования глобальной системы векторных базисных функций для $\Omega$ через барицентрические координаты. Установлены существование и единственность решения задач Дирихле и Неймана для уравнения Гельмгольца барицентрическим методом и определена оценка скорости сходимости. Уточнены особенности алгоритмической реализации метода.
внутренние задачи Дирихле и Неймана, уравнение Гельмгольца, многоугольник произвольной формы, барицентрический метод, метод Галёркина, барицентрические координаты, оценка сходимостиThe application of the barycentric method for the numerical solution of Dirichlet and Neumann problems for the Helmholtz equation in the bounded simply connected domain $\Omega\subset\mathbb{R}^2$ is considered. The main assumption in the solution is to set the $\Omega$ boundary in a piecewise linear representation. A distinctive feature of the barycentric method is the order of formation of a global system of vector basis functions for $\Omega$ via barycentric coordinates. The existence and uniqueness of the solution of Dirichlet and Neumann problems for the Helmholtz equation by the barycentric method are established and the convergence rate estimate is determined. The features of the algorithmic implementation of the method are clarified.
-
Для класса динамических систем, включающего в себя уравнения колебаний упругой балки на упругом основании, автономные системы обыкновенных дифференциальных уравнений, системы гидродинамического типа и др., изложена процедура приближенного вычисления амплитуд периодических решений, бифурцирующих из точек покоя при наличии резонансов.
Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances, pp. 12-22The procedure of approximate calculation of amplitudes for periodic solutions bifurcating from rest points in the presence of resonance is studied for a class of dynamical systems. This class includes equations of spring beam oscillations located on elastic foundations, autonomous systems of ordinary differential equations, hydrodynamical systems etc. The methodological basis of the procedure is the Lyapunov-Schmidt method considered in the context of general theory of smooth SO(2)-equivariant Fredholm equations (in infinite dimensional Banach spaces). The topic of the paper develops and extends the earlier research of B.M Darinsky, Y.I. Sapronov, and V.A. Smolyanov.
-
Для динамической системы, подверженной воздействиям управления и помехи и содержащей последействие в управляющих силах, рассматривается задача об управлении с оптимальным гарантированным результатом для показателя качества, представляющего собой евклидову норму совокупности отклонений движения системы в заданные моменты времени от заданных целей. На основе функциональной трактовки, опирающейся на своеобразный прогноз движений, исходная задача сводится к вспомогательной дифференциальной игре для системы без запаздывания и с терминальной платой. Функция цены этой игры вычисляется на базе конструкции выпуклых сверху оболочек вспомогательных функций из метода стохастического программного синтеза, оптимальные стратегии строятся методом экстремального сдвига на сопутствующие точки. Рассматриваются иллюстрирующие примеры, приводятся результаты численных экспериментов.
For a dynamical system under control and disturbances, and with delay in control, the problem of control with the optimal guaranteed result is considered for a quality index which is the Euclidean norm of the set of deviations of a system motion at the given instants from the given targets. On the basis of a functional treatment basing on a proper prediction of the motion the problem is reduced to an auxiliary differential game for a system without delay and with a terminal quality index. The value of this game is calculated from the construction of upper convex hulls of auxiliary functions from the method of stochastic program synthesis, optimal strategies are formed by the method of an extremal shift to the corresponding points. Illustrating examples and results of numerical experiments are presented.
-
Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,L − n. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса y ∈ E. Критерий аппроксимации минимум величины ||y − ŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами α ∈ ω ⊂ S ⊂ En+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора y ∈ E есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.
вариационная идентификация, алгебраическая идентификация, кусочно–линейная динамическая аппроксимация, ортогональная регрессия, неградиентная оптимизацияSome properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients α ∈ ω ⊂ S ⊂ En+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.
-
В качестве математической модели конфликта рассматривается бескоалиционная игра Γ двух участников при неопределенности. О неопределенности известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют. Для оценки риска в Γ привлекается функция риска по Сэвиджу (из принципа минимаксного сожаления). Качество функционирования участников конфликта оценивается по двум критериям - исходам и рискам, при этом каждый из них стремится увеличить исход и одновременно уменьшить риск. На основе синтеза принципов минимаксного сожаления и гарантированного результата, равновесности по Нэшу и оптимальности по Слейтеру, а также решения иерархической двухуровневой игры по Штакельбергу формализуется понятие гарантированного по исходам (выигрышам) и рискам равновесия в Γ. Приведен пример. Затем устанавливается существование такого решения в смешанных стратегиях при обычных ограничениях в математической теории игр.
стратегии, ситуации, неопределенности, бескоалиционная игра, равновесность по Нэшу, максимум и минимум по СлейтеруAs a mathematical model of conflict the non-cooperation game Γ of two players under uncertainty is considered. About uncertainty only the limits of change are known. Any characteristics of probability are absent. To estimate risk in Γ we use Savage functions of risk (from principle of minimax regret). The quality of functioning of conflict's participants is estimated according to two criteria: outcomes and risks, at that each of the participants tries to increase the outcome and simultaneously to decrease the risk. On the basis of synthesis of principles of minimax regret and guaranteed result, Nash equilibrium and Slater optimality as well as solution of the two-level hierarchical Stackelberg game, the notion of guaranteed equilibrium in Γ (outcomes (prize) and risks) is formalized. We give the example. Then the existence of such a solution in mixed strategies at usual limits in mathematical game theory is established.
-
В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.
В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.
С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.
Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.
система квазилинейных уравнений, уравнение Гамильтона-Якоби-Беллмана, минимаксное/вязкостное решение, метод характеристикWe consider the Cauchy problem for the system of quasi-linear first order equations of a special form. The system is symmetric, the state variable is n-dimensional. The considered Cauchy problem is deduced from the Cauchy problem for the Hamilton-Jacobi-Bellman equation by means of the operation of differentiation of this equation and the boundary condition with respect to the variable xi. It is assumed that the Hamiltonian and the initial condition are continuously differentiable functions. The Hamiltonian is convex with respect to the adjoint variable.
The paper presents a new approach to the definition of the generalized solution of the system of quasi-linear first order equations. The generalized solution belongs to the class of multivalued functions with convex compact values. We prove the existence, uniqueness and stability theorems. The semigroup property for the proposed generalized solution is obtained. It is shown that the potential for generalized solutions of quasi-linear equations coincides with the unique minimax/viscosity solution of the corresponding Cauchy problem for the Hamilton-Jacobi-Bellman equation, and at the points of differentiability of the minimax solution its gradient coincides with the generalized solution of the Cauchy problem. Properties of the generalized solutions of the Cauchy problem for a system of quasi-linear equations are obtained on the basis of this connection. In particular, it is shown that the introduced generalized solution coincides with the superdifferential of the minimax solution of the Cauchy problem and is singlevalued almost everywhere.
The structure of the set of points at which the minimax solution is not differentiable is described by using the characteristics of the Hamilton-Jacobi-Bellman equation.
It is shown that the property of the generalized solution of the quasilinear equation with a scalar state variable proposed by O.A. Oleinik, can be extended to the case of the system of quasi-linear equations under consideration.
-
О равномерной сходимости аппроксимаций потенциала двойного слоя вблизи границы двумерной области, с. 26-43На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации потенциала двойного слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho=\left(r^2-d^2\right)^{1/2}$, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^5$, а также на самой границе. Также доказано, что использование для вычисления интегралов стандартных квадратурных формул не нарушает равномерной кубической сходимости аппроксимаций прямого значения потенциала на границе класса $C^6$. При некоторых упрощениях доказано, что использование для вычисления интегралов стандартных квадратурных формул влечет отсутствие равномерной сходимости аппроксимаций потенциала внутри области вблизи любой граничной точки. Теоретические выводы подтверждены результатами численного решения задачи Дирихле для уравнения Лапласа в круговой области.
квадратурная формула, потенциал двойного слоя, метод граничных элементов, почти сингулярный интеграл, эффект пограничного слоя, равномерная сходимостьOn the basis of piecewise quadratic interpolation, semi-analytical approximations of the double layer potential near and on the boundary of a two-dimensional domain are obtained. To calculate the integrals formed after the interpolation of the density function, exact integration with respect to the variable $\rho=\left(r^2-d^2\right)^{1/2}$ is used, where $d$ and $r$ are the distances from the observed point to the boundary of the domain and to the boundary point of integration, respectively. The study proves the stable convergence of such approximations with the cubic velocity uniformly near the boundary of the class $C^5$, and also on the boundary itself. It is also proved that the use of standard quadrature formulas for calculating the integrals does not violate the uniform cubic convergence of approximations of the direct value of the potential on the boundary of the class $C^6$. With some simplifications, it is proved that the use of standard quadrature formulas for calculating the integrals entails the absence of uniform convergence of potential approximations inside the domain near any boundary point. The theoretical conclusions are confirmed by the results of the numerical solution of the Dirichlet problem for the Laplace equation in a circular domain.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.