Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается линейная нестационарная дифференциальная игра преследования группы убегающих группой преследователей. Цель преследователей - поймать всех убегающих, цель убегающих - хотя бы одному уклониться от встречи. Все игроки обладают равными динамическими возможностями, геометрические ограничения на управление - строго выпуклый компакт с гладкой границей.
Рассматривается вопрос о минимальном количестве убегающих, достаточном для уклонения от заданного числа преследователей из любых начальных позиций. Для оценки сверху этого количества используются достаточные условия разрешимости глобальной задачи уклонения. В предположении, что для поимки одного убегающего достаточно принадлежности начальной позиции убегающего внутренности выпуклой оболочки начальных позиций преследователей, строится оценка снизу.
Полученная двухсторонняя оценка числа убегающих, достаточного для уклонения от встречи из любой начальной позиции от заданного числа преследователей, иллюстрируется примерами.
A linear non-stationary differential pursuit game with a group of pursuers and a group of evaders is considered. The pursuers' goal is to catch all evaders and the evaders' goal is at least for one of them to avoid contact with pursuers.
All players have equal dynamic capabilities, geometric constraints on the control are strictly convex compact set with smooth boundary. The point in question is the minimum number of evaders that is sufficient to evade a given number of pursuers from any initial position. Sufficient conditions for the solvability of the global problem of evasion are used as an upper estimate of this minimum. We assume that to capture one evader it suffices that the initial position of this evader lie in the interior of convex hull of initial positions of pursuers. Using this assumption we find a lower estimate of this minimum.
The obtained two-sided estimate of the number of evaders sufficient to avoid contact with a given number of pursuers from any initial position is illustrated by examples.
-
Рассматривается линейная задача преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Движение каждого участника имеет вид $\dot z+a(t)z=w.$ Геометрические ограничения на управления - строго выпуклый компакт с гладкой границей, терминальные множества - начало координат. Предполагается, что убегающие в процессе игры не покидают пределы выпуклого конуса. Целью преследователей является поимка двух убегающих, цель группы убегающих противоположна. Говорят, что в задаче преследования происходит поимка, если существуют два преследователя, из заданной группы преследователей, которые ловят убегающих, при этом моменты поимки могут не совпадать. В терминах начальных позиций получены достаточные условия поимки двух убегающих. Приведены примеры, иллюстрирующие полученные результаты.
On the capture of two evaders in a non-stationary pursuit-evasion problem with phase restrictions, pp. 12-20We consider a linear problem of pursuing two evaders by a group of persecutors in case of equal dynamic opportunities of all participants and under phase restrictions imposed on the states of evaders. We assume that the evaders use the same control. The movement of each participant has the form $ \dot z + a (t) z = w. $ Geometric constraints on the control are strictly convex compact set with smooth boundary, and terminal sets are the origin of coordinates. It is assumed that the evaders do not leave the convex cone. The aim of a group of pursuers is to capture two evaders; the aim of a group of evaders is opposite. We say that a capture holds in the problem of pursuing two evaders if among the specified number of pursuers there are two of them who catch the evaders, possibly at different times. We obtain sufficient conditions for capturing two evaders in terms of initial positions. The results obtained are illustrated by examples.
-
Однотипная задача импульсной встречи в заданный момент времени с терминальным множеством в форме кольца, с. 197-211Рассматривается линейная дифференциальная игра с заданным моментом окончания $p$. Множества достижимости игроков являются $n$-мерными шарами. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Тот факт, что терминальное множество не является выпуклым, потребовал привлечения дополнительной теории, позволяющей находить сумму и разность Минковского для кольца и шара в $n$-мерном пространстве. На выбор управления первого игрока накладывается импульсное ограничение. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым усложняя задачу. Управление второго игрока стеснено геометрическими ограничениями. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. Построен максимальный стабильный мост, ведущий в заданный момент времени на терминальное множество. Стабильный мост определяется функциями внешнего и внутреннего радиусов, которые вычислены в явном виде.
We consider a linear differential game with the fixed end time $p$. Attainability domains of players are $n$-dimensional balls. The terminal set of a game is determined by a condition for assigning the norm of a phase vector to a segment with positive ends. A set defined by this condition is named in the article as ring. The fact that the terminal set is not convex required an additional theory allowing us to calculate Minkowski sum and difference for a ring and a ball in $n$-dimensional space. Control of the first player has a pulse constraint. Abilities of the first player are determined by the stock of resources that can be used by the player at formation of his control. At certain moments of time the separation of a part of the resources stock is possible, which may implicate an “instantaneous” change of a phase vector, thereby complicating the problem. Control of the second player has geometrical constraints. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is opposite. The maximal stable bridge leading at fixed time to the terminal set has been constructed. A stable bridge is determined by the functions of internal and external radii, which are calculated explicitly.
-
Алгоритм численного построения решений по Нэшу в позиционной дифференциальной игре двух лиц, с. 81-90Предлагается численный алгоритм построения аппроксимации множества решений Нэша в линейной неантагонистической позиционной дифференциальной игре двух лиц с терминальными цилиндрическими показателями качества и геометрическими ограничениями на управления игроков.
Numerical construction algorithm for Nash solutions in a two-person positional differential game, pp. 81-90The article presents a numerical algorithm for building an approximation of the Nash solution set in a linear non-zero sum positional differential two-person game with terminal cylindrical cost functionals and geometrical constraints on players' controls.
-
Рассматривается линейная дифференциальная игра с импульсным управлением первого игрока. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым задача усложняется. Управление второго игрока стеснено геометрическими ограничениями. Вектограммы игроков описываются одним и тем же шаром с разными радиусами, зависящими от времени. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. С помощью максимального стабильного моста, определенного авторами ранее, построены оптимальные управления игроков.
We consider a linear differential game with a pulse control of the first player. The abilities of the first player are determined by the stock of resources that the player can use when forming his control. At certain instants of time a separation of part of the resources stock is possible, which may implicate an “instantaneous” change of a phase vector, resulting in the complication of the problem. The control of the second player has geometrical constraints. The vectograms of the players are described by the same ball with different time-dependent radii. The terminal set of the game is determined by the condition of belonging the norm of a phase vector to a segment with positive ends. In this paper, a set defined by this condition is called a ring. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is opposite. With the maximal stable bridge, which has been defined by the authors previously, optimal controls of players are constructed.
-
$\Pi$-стратегия для дифференциальной игры преследования с интегральными ограничениями обобщенного типа, с. 292-311В статье исследуется дифференциальная игра простого преследования, когда на управления двух противоборствующих игроков накладываются интегральные ограничения обобщенного типа. Обобщенность предлагаемого ограничения заключается в том, что оно включает в себя ранее известные ограничения, такие как интегральные, геометрические, линейные, экспоненциальные и их смешанности. В общем, оно включает в себя 25 типов задач преследования с такими разнотипными ограничениями. Для решения задачи преследования при таких обобщенных ограничениях предлагается стратегия параллельного преследования (сокращенно $\Pi$-стратегия) и находятся достаточные условия разрешимости этой задачи. В конце статьи предлагаются таблицы, где приводятся каждый частный тип игры, условия ее разрешимости, разрешающая функция (определяющая соответствующую $\Pi$-стратегию) и время поимки.
дифференциальные игры, нелинейное интегральное ограничение, преследователь, убегающий, стратегия, преследование, гарантированное время захвата
$\Pi$-strategy for a differential game of pursuit with integral constraints of a generalized type, pp. 292-311The paper investigates a differential game of simple pursuit, when the controls of two opposing players are subject to integral constraints of a generalized type. The generalization of the proposed restriction lies in the fact that it includes previously known restrictions such as integral, geometric, linear, exponential and their mixtures. In general, it includes 25 types of pursuit problems with such different types of constraints. To solve the pursuit problem under such generalized constraints, we propose a parallel pursuit strategy ($\Pi$-strategy for short) and find sufficient conditions for the solvability of this problem. At the end of the article, tables are provided that list each particular type of game, the conditions for its solvability, the resolving function (which determines the corresponding $\Pi$-strategy), and the time of capture.
-
О моделировании динамики системы Ball and Beam как нелинейной мехатронной системы с геометрической связью, с. 414-430Рассматривается система Ball and Beam с нелинейной геометрической связью. Из полного уравнения этой связи определяются два возможных положения равновесия системы. Проведен сравнительный анализ структур уравнений возмущенного движения в окрестности обоих положений равновесия, исходя из уравнений без множителей связей в форме М.Ф. Шульгина. На этой основе обсуждается вопрос о допустимости линеаризации геометрических связей. Даны решения задач стабилизации для каждого равновесия при двух вариантах выбора избыточной координаты. Стабилизирующее управление (напряжение на якорной обмотке приводного двигателя) определяется решением методом Н.Н. Красовского линейно-квадратичных задач для соответствующих управляемых подсистем. Показано совпадение управлений как функций времени для одного и того же равновесия при разном выборе избыточной координаты, причем стабилизирующие управления являются при этом линейными функциями разных фазовых переменных. Приведены графики переходных процессов в замкнутых найденными управлениями системах. Асимптотическая устойчивость обоих положений равновесия в полной нелинейной замкнутой системе следует из ранее доказанной теоремы об асимптотической устойчивости при наличии нулевых корней характеристического уравнения, соответствующих избыточным координатам.
геометрические связи, избыточные координаты, уравнения М.Ф. Шульгина, Ball and Beam, устойчивость, стабилизация, положение равновесия
Modeling of the Ball and Beam system dynamics as a nonlinear mechatronic system with geometric constraint, pp. 414-430The Ball and Beam system with a nonlinear geometric constraint is considered. Two possible equilibrium positions of this system are found from the complete constraint equation. The structures of the equations of disturbed motion are analyzed in a neighborhood of the equilibrium positions, using equations without Lagrange multipliers in the form of M.F. Shul'gin. The possibility of linearization of the constraint equation is discussed. The stabilization problem is solved for every equilibrium position and two possible variants of the redundant coordinate. Stabilizing control (voltage at the armature of the drive motor) is calculated via solving linear-quadratic problems by N.N.Krasovsky's method for corresponding control subsystems. The coincidence of controls as time functions for the same equilibrium is shown for different choices of the redundant coordinate, and the stabilizing controls are linear functions of different phase variables. The graphs of transient processes in systems closed by the obtained controls are given. The asymptotic stability of both equilibrium positions in a complete nonlinear closed system follows from the previously proved theorem on asymptotic stability in the presence of zero roots of the characteristic equation corresponding to redundant coordinates.
-
Рассматриваются так называемые стандартные управляемые системы, это системы дифференциальных уравнений, заданных на гладких многообразиях конечной размерности, равномерно непрерывные и ограниченные по времени на числовой прямой и локально липшицевы по фазовым переменным. Кроме того, предполагается, что задано компактное множество, задающее геометрические ограничения на допустимые управления и, кроме того, выполнено условие невырожденности, означающее, что для каждой точки фазового многообразия и всех моментов времени найдется управление, при котором значение векторного поля содержится в евклидовом пространстве, касательном к фазовому многообразию в заданной точке.
При помощи модифицированного метода функции Ляпунова и построения омега-предельного множества соответствующей динамической системы сдвигов сформулированы утверждения о существовании ограниченных на положительной полуоси допустимых управляемых процессов и утверждение о равномерной локальной управляемости соответствующего магистрального процесса.
магистральные процессы, многообразия конечной размерности, равномерная локальная управляемость, омега-предельные множества, функции ЛяпуноваWe consider the so-called standard control systems. These are systems of differential equations defined on smooth manifolds of finite dimension that are uniformly continuous and time-bound on the real axis and locally Lipschitz in the phase variables. In addition, we assume that the compact set is given, which defines geometric constraints on the admissible controls and moreover, the non-degeneracy condition holds. This condition means that for each point of the phase manifold and for all times there exists a control such that the value of vector field is contained in the Euclidean space that is tangent to the phase manifold at a given point.
Using the modified method of the Lyapunov function and constructing omega-limit set of the corresponding dynamical system of shifts, we give propositions about the existence of admissible control processes that are bounded on the positive semiaxis, and the assertion of uniform local controllability of the corresponding turnpike process.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.