Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'integral separability':
Найдено статей: 21
  1. Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.

    In this paper we study a boundary value problem for the fourth order partial differential equation with the lowest term in a rectangular domain. For the solution of the problem a priori estimate is obtained. From a priori estimate the uniqueness of the solution of the problem follows. For the proof of the solvability of this problem we use the method of separation of variables. The solvability of this problem is reduced to the Fredholm integral equation of the second kind with respect to unknown function. Integral equation is solved by the method of successive approximations. We find the sufficient conditions for the absolute and uniform convergence of series representing the solution of the problem and the series obtained by differentiation four times with respect x and two times with respect to t.

  2. Работа посвящена исследованию свойства интегральной разделенности линейных систем с дискретным временем. Согласно определению система $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ называется системой с интегральной разделенностью, если она имеет фундаментальную систему решений $x^1(\cdot),\ldots,x^n(\cdot)$ такую, что при некоторых $\gamma>0$, $a>1$ и всех натуральных $m>s$, $i\leqslant n-1$ выполнены неравенства $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ Понятие интегральной разделенности систем с непрерывным временем было введено Б.Ф. Быловым в 1965 году. Доказаны критерии интегральной разделенности систем с дискретным временем: приводимость к диагональному виду с интегрально разделенной диагональю; устойчивость и некратность показателей Ляпунова. Подробно исследовано также свойство диагонализируемости систем с дискретным временем. Доказательства учитывают специфику этих систем.

    Banshchikova I.N., Popova S.N.
    On the property of integral separation of discrete-time systems, pp. 481-498

    This paper is devoted to the study of the property of an integral separation of discrete time-varying linear systems. By definition, the system $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ is called a system with integral separation if it has a basis of solutions $x^1(\cdot),\ldots,x^n(\cdot)$ such that for some $\gamma>0$, $a>1$ and all natural $m>s$, $i\leqslant n-1$ the inequalities $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ are satisfied. The concept of integral separation of systems with continuous time was introduced by B.F. Bylov in 1965. The criteria for the integral separation of systems with discrete time are proved: reducibility to diagonal form with an integrally separated diagonal; stability and nonmultiplicity of Lyapunov exponents. The property of diagonalizability of discrete-time systems is also studied in detail. The evidence takes into account the specifics of these systems.

  3. Работа посвящена исследованию разрешимости обратной краевой задачи с неизвестным коэффициентом и правой частью, зависящей от времени, для линеаризованного уравнения Бенни-Люка с несамосопряженными краевыми и с дополнительными интегральными условиями. Задача рассматривается в прямоугольной области. Дается определение классического решения поставленной задачи. Сначала рассматривается вспомогательная обратная краевая задача и доказывается ее эквивалентность (в определенном смысле) исходной задаче. Для исследования вспомогательной обратной краевой задачи сначала используется метод разделения переменных. После применения формальной схемы метода разделения переменных решение прямой краевой задачи (при заданной неизвестной функции) сводится к решению задачи с неизвестными коэффициентами. После этого решение задачи сводится к решению некоторой счетной системы интегро-дифференциальных уравнений относительно неизвестных коэффициентов. В свою очередь, последняя система относительно неизвестных коэффициентов записывается в виде одного интегро-дифференциального уравнения относительно искомого решения. Затем, используя соответствующие дополнительные условия обратной вспомогательной краевой задачи, для определения неизвестных функций получаем систему двух нелинейных интегральных уравнений. Таким образом, решение вспомогательной обратной краевой задачи сводится к системе из трех нелинейных интегро-дифференциальных уравнений относительно неизвестных функций. Строится конкретное банахово пространство. Далее, в шаре из построенного банахова пространства с помощью сжатых отображений доказывается разрешимость системы нелинейных интегро-дифференциальных уравнений, которая также является единственным решением вспомогательной обратной краевой задачи. С использованием эквивалентности задач доказывается существование и единственность классического решения исходной задачи.

    The paper investigates the solvability of an inverse boundary-value problem with an unknown coefficient and the right-hand side, depending on the time variable, for the linearized Benney-Luke equation with non-self-adjoint boundary and additional integral conditions. The problem is considered in a rectangular domain. A definition of the classical solution of the problem is given. First, we consider an auxiliary inverse boundary-value problem and prove its equivalence (in a certain sense) to the original problem. To investigate the auxiliary inverse boundary-value problem, the method of separation of variables is used. By applying the formal scheme of the variable separation method, the solution of the direct boundary problem (for a given unknown function) is reduced to solving the problem with unknown coefficients. Then, the solution of the problem is reduced to solving a certain countable system of integro-differential equations for the unknown coefficients. In turn, the latter system of relatively unknown coefficients is written as a single integro-differential equation for the desired solution. Next, using the corresponding additional conditions of the inverse auxiliary boundary-value problem, to determine the unknown functions, we obtain a system of two nonlinear integral equations. Thus, the solution of an auxiliary inverse boundary-value problem is reduced to a system of three nonlinear integro-differential equations with respect to unknown functions. A special type of Banach space is constructed. Further, in a ball from a constructed Banach space, with the help of contracted mappings, we prove the solvability of a system of nonlinear integro-differential equations, which is also the unique solution to the auxiliary inverse boundary-value problem. Finally, using the equivalence of these problems the existence and uniqueness of the classical solution of the original problem are proved.

  4. Представлена полная аналитическая классификация атомов гиростата Ковалевской–Яхья, возникающих в критических точках ранга 1. Найдены все разделяющие значения гиростатического момента при классификации диаграмм Смейла–Фоменко. Разработан "конструктор" графов Фоменко, применение которого дало полное описание грубой топологии этого интегрируемого случая. Доказано, что имеется девять групп эквивалентных молекул (без меток), содержащих 22 устойчивых графа и 6 неустойчивых по отношению к количеству критических окружностей на критических уровнях.

    We present the complete analytical classification of the atoms arising at the critical points of rank 1 of the Kowalevski–Yehia gyrostat. To classify the Smale–Fomenko diagrams, all separating values of the gyrostatic momentum are found. We present a kind of constructor of the Fomenko graphs; its application gives the complete description of the rough topology of this integrable case. It is proved that there exists exactly nine groups of identical molecules (not considering the marks). These groups contain 22 stable types of graphs and 6 unstable ones with respect to the number of critical circles on the critical levels.

  5. Рассматривается линейная управляемая система $$\dot x=A(t)x+B(t)u,\quad t\in\mathbb R,\quad x\in\mathbb R^{n},\quad u\in\mathbb R^{m}, \qquad \qquad (1)$$ в предположении непрерывности по $t$ и $s$ матрицы Коши $X(t,s)$ свободной системы $\dot x=A(t)x$. На каждом отрезке $[\tau,\tau+\vartheta]$ фиксированной длины $\vartheta$ задается нормированное пространство $Z_{\tau}$ функций, определенных на этом отрезке. Управление $u$ на отрезке $[\tau,\tau+\vartheta]$ называется допустимым, если $u\in Z_{\tau}$ и существует $\mathcal Q_{\tau}(u):=\int_{\tau}^{\tau+\vartheta}X(\tau,s)B(s)u(s)\,ds$. Векторное подпространство $U_{\tau}$ пространства $Z_{\tau}$, на котором определен оператор $\mathcal Q_{\tau}$, называется пространством допустимых управлений для системы $(1)$ на отрезке $[\tau,\tau+\vartheta]$. Предложено определение равномерной полной управляемости системы $(1)$ для случая произвольной зависимости пространства допустимых управлений от момента начала процесса управления. Получены прямые и двойственные необходимые и достаточные условия равномерной полной управляемости линейной системы в этой ситуации. Показано, что при должном выборе пространства допустимых управлений полученные условия эквивалентны классическим определениям равномерной полной управляемости.

    Makarov E.K., Popova S.N.
    On the definition of uniform complete controllability, pp. 326-343

    We consider a linear control system $$\dot x = A(t)x + B(t)u,\quad t\in\mathbb{R},\quad x\in\mathbb{R}^{n},\quad u\in\mathbb{R}^{m}, \qquad \qquad(1)$$ under the assumption that the transition matrix $X(t,s)$ of the free system $\dot x = A(t)x$ is continuous with respect to $t$ and $s$ separately. We also suppose that on each interval $[\tau, \tau + \vartheta]$ of fixed length $\vartheta$ the normed space $Z_{\tau} $ of functions defined on this interval is given. A control $u$ on the interval $[\tau, \tau+\vartheta]$ is called admissible if $u\in Z_{\tau}$ and there exists the integral $\mathcal Q_{\tau}(u):=\int_{\tau}^{\tau+\vartheta}X(\tau,s)B(s)u(s)\,ds$. The vector subspace $U_{\tau}$ of the space $Z_{\tau}$ where the operator $\mathcal Q_{\tau}$ is defined is called the space of admissible controls for the system $(1)$ on the interval $[\tau,\tau +\vartheta]$. We propose a definition of uniform complete controllability of the system $(1)$ for the case of an arbitrary dependence of the space of admissible controls on the moment of the beginning of the control process. In this situation direct and dual necessary and sufficient conditions for uniform complete controllability of a linear system are obtained. It is shown that with proper choice of the space of admissible controls, the resulting conditions are equivalent to the classical definitions of uniform complete controllability.

  6. Рассматривается терминальная задача оптимизации нелинейной управляемой системы Гурса-Дарбу с полной каратеодориевской правой частью уравнения в случае, когда необходимо искать решения системы в классе функций с суммируемой в некоторой степени $p>1$ смешанной производной. Показывается, что если правая часть аффинна по производным и они в ней аддитивно отделены от управления, то вырождение поточечного принципа максимума (необходимого условия оптимальности первого порядка при игольчатом варьировании управления) всегда является сильным, то есть на особом управлении принципа максимума одновременно с принципом максимума вырождаются и условия оптимальности второго порядка. Приводятся необходимые условия оптимальности особых управлений в этой ситуации, обобщающие известные сходные условия, относящиеся к случаю решений с ограниченной смешанной производной и более гладких правых частей уравнений.

    The paper deals with the terminal optimization problem connected with the Goursat-Darboux control system. The right-hand side of the differential equation is a full nonlinear Caratheodory function. We consider the case in which solutions of the Goursat-Darboux system necessarily belong to a class of functions with $p$-integrable (for some $p>1$) mixed derivatives. In our case a choice of this class is defined by boundary functions. We study singular controls in the sense of the pointwise maximum principle that are controls for which this principle is strong degenerate, i.e., degenerate together with second-order optimality conditions. It is shown that for strong degeneration of the pointwise maximum principle it is sufficient that right-hand side with respect to state derivatives is affine and these derivatives and control are separated additively. Necessary optimality conditions of the singular controls are given for this case. These conditions generalize similar necessary optimality conditions which were obtained for more smooth right-hand sides in the case of solutions with bounded mixed derivatives.

  7. В данной статье для одного дифференциального уравнения в частных производных высокого четного порядка с оператором Бесселя в прямоугольной области сформулированы две нелокальные начально-граничные задачи. Исследована корректность одной из поставленных задач. При этом применением метода разделения переменных к изучаемой задаче получена спектральная задача для обыкновенного дифференциального уравнения высокого четного порядка. Доказана самосопряженность последней задачи, откуда следует существование системы ее собственных функций, а также ортонормированность и полнота этой системы. Далее, построена функция Грина спектральной задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром. С помощью этого интегрального уравнения и теоремы Мерсера исследована равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Доказана равномерная сходимость этого ряда, а также рядов, полученных из него почленным дифференцированием. Методом спектрального анализа доказана единственность решения задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.

    In the present paper, two non-local initial-boundary value problems have been formulated for a partial differential equation of high even order with a Bessel operator in a rectangular domain. The correctness of one of the considered problems has been investigated. To do this, applying the method of separation of variables to the problem under consideration, the spectral problem was obtained for an ordinary differential equation of high even order. The self-adjointness of the last problem was proved, which implies the existence of the system of its eigenfunctions, as well as orthonormality and completeness of this system. Further, the Green's function of the spectral problem was constructed, with the help of which it was equivalently reduced to the Fredholm integral equation of the second kind with symmetrical kernel. Using this integral equation and Mercer's theorem, the uniform convergence of some bilinear series depending on found eigenfunctions has been studied. The order of the Fourier coefficients was established. The solution of the considered problem has been written as the sum of a Fourier series with respect to the system of eigenfunctions of the spectral problem. The uniform convergence of this series and also the series obtained from it by term-by-term differentiation was proved. Using the method of spectral analysis, the uniqueness of the solution of the problem was proved. An estimate for the solution of the problem was obtained, from which its continuous dependence on the given functions follows.

  8. Проводится исследование динамической эволюции шести моделей рассеянных звездных скоплений по данным о фазовых координатах звезд, полученных при численном интегрировании уравнений движения звезд. Для этой цели используются фазовые координаты звезд для 100 равноотстоящих моментов времени от начального t=0 до tm≅5.1τvr (τvr - начальное время бурной релаксации скопления). На этом интервале времени ошибки, связанные с округлением и экспоненциальным нарастанием возмущений в исходных координатах звезд, существенно не сказываются на статистических выводах о характере движения звезд скопления. Метод исследования основан на вычислениях взаимных корреляционных функций C1,2=C1,2(τ,r) (τ - временная задержка, r - расстояние между точками) для флуктуаций фазовой плотности и применении Фурье-преобразования функций C1,2 для расчета спектра частот и дисперсионных соотношений. Анализ графиков функций C1,2, спектров частот и дисперсионных кривых подтверждает существование в моделях волн фазовой плотности, позволяет установить полный спектр радиальных колебаний фазовой плотности, отделить устойчивые колебания от неустойчивых, рассчитать периоды колебаний фазовой плотности и инкременты нарастания неустойчивых колебаний фазовой плотности. Подтверждены теоретические оценки периодов известных неустойчивых гомологических колебаний ядер моделей скоплений. Указываются некоторые астрофизические приложения полученных результатов: возникновение иррегулярных структур в рассеянных скоплениях, слабая турбулентность в движениях звезд скоплений.

    The investigation of dynamical evolution of 6 open cluster models is carried out on data about phase coordinates of stars received by numerical integration of stellar motion equations. To attain the aim the phase coordinates of stars for 100 equidistant moments of time from the initial t=0 to tm≅5.1τvr (τvr is the initial time of cluster violent relaxation), are used. Over the interval of time the rounding-off errors and errors because of exponential growth of initial coordinates perturbations do not affect statistical conclusions about motion behavior of cluster stars. The investigation method is based on calculations of mutual correlation functions C1,2=C1,2(τ,r) (τ  is the time delay, r is the distance between the points) for phase density fluctuations and application of Fourier transformations of functions C1,2 in order to calculate frequency spectra and dispersion relations. The analysis of graphics C1,2, frequency spectra and dispersion curves confirms the existence of phase density waves in cluster models, allows to get a complete spectrum of phase density radial oscillations, to separate stable and unstable oscillations, to calculate the periods of phase density oscillations and increments of unstable phase density oscillations. The theoretical estimations of periods of known unstable homological core oscillations of cluster models are confirmed. Pointed out are some astrophysical applications of results received: the origin of irregular structures in open clusters, weak turbulence of cluster star motions.

  9. В статье рассматривается оператор Штурма-Лиувилля с вещественным квадратично интегрируемым потенциалом. Граничные условия являются неразделенными. В одно из этих граничных условий входит квадратичная функция спектрального параметра. Изучены некоторые спектральные свойства оператора. Доказаны вещественность и отличность от нуля собственных значений и отсутствие присоединенных функций к собственным функциям, выведена асимптотическая формула для спектра оператора и получено представление характеристической функции в виде бесконечного произведения. Результаты статьи играют важную роль при решении обратных задач спектрального анализа для дифференциальных операторов.

    The article considers the Sturm-Liouville operator with a real quadratically integrable potential. Boundary conditions are non-separated. One of these boundary conditions includes the quadratic function of the spectral parameter. Some spectral properties of the operator are studied. It is proves that eigenvalues are real and non-zero and there are no associated functions to the eigenfunctions. An asymptotic formula for the spectrum of the operator is derived, and a representation of the characteristic function as an infinite product is obtained. The results of the paper play an important role in solving inverse problems of spectral analysis for differential operators.

  10. Пусть $H$ — банахово пространство, $T>0$, $\sigma\in[1;\infty]$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T)$, индуцированная сужениями из пространства $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ — вольтерров оператор; $f[u]\colon W\to L_\sigma(0,T;H)$ — управляемый вольтерров оператор, зависящий от управления $u\in U$. Рассматривается уравнение вида $$ x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W. $$ Для этого уравнения устанавливаются признаки тотально (по множеству допустимых управлений) глобальной разрешимости при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее, на этот раз при других, более удобных для практического использования условиях (хотя и в более частной постановке). Отдельно рассматриваются случаи: 1) компактного вложения пространств и непрерывности операторов $\mathcal{F}$, $f[u]$ (такой подход автором ранее не использовался); 2) выполнения локально-интегрального аналога условия Липшица относительно указанных операторов. Во втором случае доказывается также единственность решения. В первом случае применяется теорема Шаудера, во втором — технология продолжения решения по времени, то есть продолжения вдоль вольтерровой цепочки. В качестве примера рассматривается нелинейное волновое уравнение в пространстве $\mathbb{R}^n$.

    Let $H$ be a Banach space, $T>0$, $\sigma\in[1;\infty]$ and let $W[0;\tau]$, $\tau\in(0;T)$, be the scale of Banach spaces which is induced by restrictions from a space $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ be a Volterra operator (an operator with Volterra property); $f[u] \colon W\to L_\sigma(0,T;H)$ be a controlled Volterra operator depending on a control $u\in U$. We consider the equation as follows $$x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W.$$ For this equation we establish signs of totally (with respect to a set of admissible controls) global solvability subject to global solvability of some functional integral inequality in the space $\mathbb{R}$. In many particular cases the above inequality may be realized as the Cauchy problem associated with an ordinary differential equation. In fact, the analogous result which was obtained by the author formerly is developed, this time under other hypotheses, more convenient for practical usage (although in more particular statement). Separately, we consider the cases of compact embedding of spaces and continuity of the operators $\mathcal{F}$, $f[u]$ (such an approach has not been used by the author formerly), from one hand, and of local integral analogue of the Lipschitz condition with respect to that operators, from another hand. In the second case we prove also the uniqueness of solution. In the first case we use Schauder theorem and in the second case we apply the technique of solution continuation along with the time axis (id est continuation along with a Volterra chain). Finally, as an example, we consider a nonlinear wave equation in the space $\mathbb{R}^n$.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref