Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'matrix representation':
Найдено статей: 10
  1. Золотых Н.Ю., Кубарев В.К., Лялин С.С.
    Метод двойного описания над полем алгебраических чисел, с. 161-175

    Рассматривается задача построения вершинного описания выпуклого полиэдра, заданного как множество решений некоторой системы линейных неравенств, коэффициенты которой являются алгебраическими числами. Обратная задача эквивалентна (двойственна) исходной. Предлагаются программные реализации нескольких модификаций хорошо известного метода двойного описания (метода Моцкина-Бургера), решающего поставленную задачу. Рассматривается два случая: 1) элементы системы неравенств - произвольные алгебраические числа, при этом каждое такое число задается минимальным многочленом и локализующим интервалом; 2) элементы системы неравенств принадлежат заданному конечному расширению ${\mathbb Q} (\alpha)$ поля ${\mathbb Q}$, при этом для $\alpha$ задаются минимальный многочлен и локализующий интервал, а все элементы исходной системы, конечные и промежуточные результаты представлены как многочлены от $\alpha$. Как и ожидалось, программная реализация для второго варианта значительно превосходит реализацию для первого варианта по производительности. Для большего ускорения во втором случае предлагается использовать булевы матрицы вместо матриц невязок. Результаты вычислительного эксперимента показывают, что программные реализации вполне пригодны для решения задач умеренных размеров.

    Zolotykh N.Y., Kubarev V.K., Lyalin S.S.
    Double description method over the field of algebraic numbers, pp. 161-175

    We consider the problem of constructing the dual representation of a convex polyhedron defined as a set of solutions to a system of linear inequalities with coefficients which are algebraic numbers. The inverse problem is equivalent (dual) to the initial problem. We propose program implementations of several variations of the well-known double description method (Motzkin-Burger method) solving this problem. The following two cases are considered: 1) the elements of the system of inequalities are arbitrary algebraic numbers, and each such number is represented by its minimal polynomial and a localizing interval; 2) the elements of the system belong to a given extension ${\mathbb Q} (\alpha)$ of ${\mathbb Q}$, and the minimal polynomial and the localizing interval are given only for $\alpha$, all elements of the system, intermediate and final results are represented as polynomials of $\alpha$. As expected, the program implementation for the second case significantly outperforms the implementation for the first one in terms of speed. In the second case, for greater acceleration, we suggest using a Boolean matrix instead of the discrepancy matrix. The results of a computational experiment show that the program is quite suitable for solving medium-scale problems.

  2. В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с непрерывным и дискретным временем и дискретной памятью. В рамках этого класса предлагается явное представление для основных составляющих представления общего решения — фундаментальной матрицы и оператора Коши. Полученные представления даются в терминах параметров рассматриваемой системы и открывают возможность эффективного исследования общих краевых задач и задач управления относительно заданной конечной системы линейных целевых функционалов. При исследовании упомянутых задач для систем за пределами изучаемого класса рассматриваемые в работе системы с дискретной памятью могут играть роль модельных или аппроксимирующих систем и оказаться полезными при изучении грубых свойств систем с последействием, сохраняющихся при малых возмущениях параметров.

    A class of linear functional differential systems with continuous and discrete times and discrete memory is considered. An explicit representation of the principal components to the general solution representation such as the fundamental matrix and the Cauchy operator is derived. The obtained representation is given in terms of the system parameters and opens a way towards efficient studying general linear boundary value problems and control problems with respect to a fixed collection of linear on-target functionals. In the study of the problems mentioned above outside the class under consideration, the systems with discrete memory can be employed as model or approximating ones. This can be useful as applied to systems with aftereffect under studying rough properties that hold under small perturbations of the parameters.

  3. После статьи Молодцова [Molodtsov D. Soft set theory — First results // Computers and Mathematics with Applications. 1999. Vol. 37. No. 4-5. P. 19-31.] теория мягких множеств начала стремительно развиваться. Несколько авторов ввели различные операции, отношения, результаты и т.д., а также другие аспекты в теории мягких множеств и гибридных структур некорректно, несмотря на их широкое применение в математике и смежных областях. В своей работе [Molodtsov D.A. Equivalence and correct operations for soft sets // International Robotics and Automation Journal. 2018. Vol. 4. No. 1. P. 18-21.], Молодцов, отец теории мягких множеств, указал на несколько неверных результатов и понятий. Молодцов [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] также заявил, что понятие мягкого множества не везде было полностью понято и использовано. В связи с этим важно пересмотреть причуды этих представлений и дать формальное изложение понятия эквивалентности мягкого множества. Молодцов уже исследовал многие корректные операции над мягкими множествами. Мы используем некоторые понятия и результаты Молодцова [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] для создания матричных представлений, а также связанных с ними операций над мягкими множествами, и для количественной оценки сходства между двумя мягкими множествами.

    After the paper of Molodtsov [Molodtsov D. Soft set theory — First results, Computers and Mathematics with Applications, 1999, vol. 37, no. 4-5, pp. 19-31.] first appeared, soft set theory grew at a breakneck pace. Several authors have introduced various operations, relations, results, etc. as well as other aspects in soft set theory and hybrid structures incorrectly, despite their widespread use in mathematics and allied areas. In his paper [Molodtsov D.A. Equivalence and correct operations for soft sets, International Robotics and Automation Journal, 2018, vol. 4, no. 1, pp. 18-21.], Molodtsov, the father of soft set theory, pointed out several wrong results and notions. Molodtsov [Molodtsov D.A. Structure of soft sets, Nechetkie Sistemy i Myagkie Vychisleniya, 2017, vol. 12, no. 1, pp. 5-18.] also stated that the concept of soft set had not been fully understood and used everywhere. As a result, it is important to revisit the quirks of those conceptions and provide a formal account of the notion of soft set equivalency. Molodtsov already explored many correct operations on soft sets. We use some notions and results of Molodtsov [Molodtsov D.A. Structure of soft sets, Nechetkie Sistemy i Myagkie Vychisleniya, 2017, vol. 12, no. 1, pp. 5-18.] to create matrix representations as well as related operations of soft sets, and to quantify the similarity between two soft sets.

  4. Ряд задач в теории характеристических показателей Ляпунова линейных дифференциальных систем

    =A(t)x,    x∈Rn,    t≥0,

    сводится к изучению влияния возмущений коэффициентов на характеристические показатели и другие асимптотические инварианты возмущенных систем

    =A(t)y+Q(t)y,    y∈Rn,    t≥0.

    При этом возмущения коэффициентов предполагаются принадлежащими некоторым классам малости, то есть определенным подмножествам множества KCn(R+) кусочно-непрерывных и ограниченных на положительной полуоси n×n-матриц. Обычно используемые классы возмущений, например бесконечно малые (исчезающие в бесконечности), экспоненциально убывающие либо суммируемые на полуоси, задаются конкретными аналитическими условиями, но общее определение класса малости в теории показателей отсутствует. На основе анализа свойств общепринятых классов малости нами предложено аксиоматическое определение класса малости возмущений коэффициентов линейных дифференциальных систем, которому удовлетворяет большинство таких классов, используемых в теории характеристических показателей. Это определение достаточно громоздко. Для более компактной характеристики классов малости предложено использовать следующее их свойство: множество возмущений удовлетворяет предложенному определению класса малости тогда и только тогда, когда оно является полной матричной алгеброй над произвольным нетривиальным идеалом кольца функций KC1(R+) (с поточечным умножением), содержащим хотя бы одну строго положительную функцию.

    A number of problems in the Lyapunov exponent theory of linear differential systems

    =A(t)x,    x∈Rn,    t≥0,

    can be reduced to an investigation of the influence of coefficient perturbations on characteristic exponents and other asymptotic invariants of perturbed systems

    =A(t)y+Q(t)y,    y∈Rn,    t≥0.

    Here perturbations are assumed to be in some classes of smallness, i.e. certain subsets of the space KCn(R+) of piecewise continuous and bounded on the positive semiaxis n×n-matrices. Commonly used classes of perturbations, such as infinitesimal (vanishing at infinity), exponentially decaying or integrable on the positive semiaxis are defined by specific analytical conditions, but there is no general definition of the smallness class. By analyzing the desirable properties of commonly used classes, we propose an axiomatic definition for this notion, such that most of classes used in the theory of characteristic exponents satisfy this definition. Since the axioms are somewhat cumbersome, for more compact characterization we propose to use the following property of smallness classes: the set of perturbation satisfies the proposed definition if and only if it is a complete matrix algebra over an arbitrary non-trivial ideal of functional ring KC1(R+) (with the pointwise multiplication) containing at least one strictly positive function.

  5. В статье рассматривается метод поиска и анализа текстурных компонент по прямым полюсным фигурам, с учетом симметрии кубического кристалла и образца. Алгоритм основан на представлении плоскостей отражения полярным комплексом векторов. Поиск ориентации происходит путем перемещения оси полярного комплекса по единичной полусфере, с последующим вращением полярного комплекса относительно этой оси. Далее определяется положение стереографических проекций векторов полярного комплекса на дискретной прямой полюсной фигуре. Ориентация считается найденной, если проекции по крайней мере трех векторов полярного комплекса попадают в область с ненулевой интенсивностью. Для каждой ориентации вычисляется вектор Родрига. Кроме того, определяются углы Эйлера и индексы Миллера. Текстурные компоненты выделяются в интерактивном режиме путем кластеризации данных в пространстве Родрига. С помощью ковариационной матрицы определяются собственные значения и векторы, характеризующие пространственное рассеяние текстурных компонент. В работе исследуются полюсные фигуры алюминиевой фольги после различных текстурных преобразований. Найденные текстурные компоненты представлены в пространстве Родрига.

    The article deals with the method of search and analysis of textural components using direct polar figures with due account for the symmetry of a cubic crystal and a sample. The algorithm is based on the representation of reflection planes by a polar complex of vectors. Search of orientation is made by moving the axis of a polar complex over the unit hemisphere followed by the rotation of a polar complex relative to this axis. Then the position of stereographic projections of the polar complex vectors on a discrete direct pole figure is determined. Orientation is found when the projections of at least three polar complex vectors are located in the area with non-zero intensity. For each orientation a Rodrigues vector is calculated. In addition, Euler angles and Miller indices are determined. Textural components are allocated interactively by clustering the data in Rodrigues space. Using the covariance matrix the eigenvalues and eigenvectors are determined characterizing the spatial dispersion of textural components. Pole figures of an aluminum foil after various textural transformations are investigated in the article. Obtained textural components are displayed in Rodrigues space.

  6. В предыдущей работе автора для двух прерывистых функций, заданных на отрезке, и специального параметра, названного дефектом, определено понятие квазиинтеграла. Если существует интеграл Римана–Стилтьеса, то для любого дефекта существует квазиинтеграл, и все они равны между собой. Интеграл Перрона–Стилтьеса, если он существует, совпадает с одним из квазиинтегралов, где дефект определен специальным образом.

    В настоящей работе доказана теорема существования и единственности решения квазиинтегрального уравнения с постоянной матрицей. Ядро системы - скалярная кусочно-непрерывная функция ограниченной вариации, компоненты уравнения - прерывистые функции, спектральный параметр - регулярное число. При определенных условиях квазиинтегральное уравнение можно интерпретировать как импульсную систему. Получено явное представление для решения однородного квазиинтегрального уравнения. Для абсолютно регулярного спектрального параметра определен аналог матрицы Коши, исследованы его свойства и получено явное представление для решения неоднородного квазиинтегрального уравнения в форме Коши. Аналогичные результаты получены для сопряженного и союзных уравнений.

    Обсуждается возможность восстановления аппроксимирующего дефекта квазиинтеграла, - дефекта, порождающего аппроксимируемые решения импульсной системы.

    In previous article we defined the concept of quasi-integral for two regulated functions on the interval and the special parameter, called ¾defect¿. If there is the Riemann–Stieltjes integral, then for any defect there is a quasi-integral, and they are all equal. The Perron–Stieltjes integral, if it exists, coincides with one of quasi-integrals where the defect is defined in a special way.

    In the present article the theorem of existence and uniqueness of solution for a quasi-integral equation with a constant matrix is proved. System’s kernel is a scalar piecewise continuous function of bounded variation. Components of the equation are regulated functions, spectral parameter is a regular number. Under certain conditions a quasi-integral equation can be interpreted as an impulse system. An explicit representation for the solution of a quasi-integral homogeneous equation is given. For an absolutely regular spectral parameter, the analogue of the Cauchy matrix is defined, its properties are investigated and the explicit representation for the solution of the nonhomogeneous quasi-integral equation in the Cauchy form is given. Similar results are obtained for the adjoint and associated equations.

    We discussed the possibility of restoration of the approximating defect of quasi-integral, which is defect generating approximated solutions of the impulse system.

  7. Матричный шар третьего типа и обобщенный шар Ли, связанные с классическими областями, играют важную роль в теории функций многих комплексных переменных. В данной работе вычислены объемы матричного шара третьего типа и обобщенного шара Ли. Полные объемы этих областей необходимы для нахождения ядер интегральных формул для этих областей (ядра Бергмана, Коши-Сегё, Пуассона и т. д.). Кроме того, он используется для интегрального представления функции, голоморфной на этих областях, в теореме о среднем значении и других важных понятиях. Результаты, полученные в этой статье, являются общим случаем результатов Хуа Ло-кена, и его результаты в частных случаях совпадают с нашими результатами.

    Rakhmonov U.S., Abdullayev J.S.
    On volumes of matrix ball of third type and generalized Lie balls, pp. 548-557

    The third-type matrix ball and the generalized Lie ball that are connected with classical domains play a crucial role in the theory of several complex variable functions. In this paper the volumes of the third type matrix ball and the generalized Lie ball are calculated. The full volumes of these domains are necessary for finding kernels of integral formulas for these domains (kernels of Bergman, Cauchy-Szegö, Poisson etc.). In addition, it is used for the integral representation of a function holomorphic on these domains, in the mean value theorem and other important concepts. The results obtained in this article are the general case of results of Hua Lo-ken and his results in particular cases coincides with our results.

  8. В пространстве $R^l$, $l\geq 2$, рассматриваются преобразования типа инволюции. Исследуются свойства матриц этих преобразований. Определена структура рассматриваемой матрицы и доказано, что матрица этих преобразований определяется элементами первой строки. Доказана также симметричность исследуемой матрицы. Кроме того, в явном виде найдены собственные векторы и собственные значения рассматриваемой матрицы. Найдена также обратная матрица и доказано, что обратная матрица имеет такую же структуру, как и основная матрица. В качестве приложений рассматриваемых преобразований введены и изучены свойства нелокального аналога оператора Лапласа. Для соответствующего нелокального уравнения Пуассона в единичном шаре исследованы вопросы разрешимости краевых задач Дирихле и Неймана. Доказана теорема об однозначной разрешимости задачи Дирихле, построены явный вид функции Грина и интегральное представление решения, а также найден порядок гладкости решения задачи в классе Гёльдера. Найдены также необходимые и достаточные условия разрешимости задачи Неймана, явный вид функции Грина и интегральное представление.

    Transformations of the involution type are considered in the space $R^l$, $l\geq 2$. The matrix properties of these transformations are investigated. The structure of the matrix under consideration is determined and it is proved that the matrix of these transformations is determined by the elements of the first row. Also, the symmetry of the matrix under study is proved. In addition, the eigenvectors and eigenvalues of the matrix under consideration are found explicitly. The inverse matrix is also found and it is proved that the inverse matrix has the same structure as the main matrix. The properties of the nonlocal analogue of the Laplace operator are introduced and studied as applications of the transformations under consideration. For the corresponding nonlocal Poisson equation in the unit ball, the solvability of the Dirichlet and Neumann boundary value problems is investigated. A theorem on the unique solvability of the Dirichlet problem is proved, an explicit form of the Green's function and an integral representation of the solution are constructed, and the order of smoothness of the solution of the problem in the Hölder class is found. Necessary and sufficient conditions for the solvability of the Neumann problem, an explicit form of the Green's function, and the integral representation are also found.

  9. В предыдущей работе автора определено параметрическое семейство конечномерных пространств специальных квадратичных сплайнов лагранжевого типа. В каждом пространстве в качестве решения начально-граничной задачи для простейшего волнового уравнения предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей. Формула для невязки представляет собой положительно определенную квадратичную форму от этих же величин, однако из-за своей громоздкости она плохо приспособлена для анализа качества аппроксимации исходной задачи при варьировании параметрами.

    Получено альтернативное представление для невязки, представляющее собой положительно определенную квадратичную форму от новых конечных разностей, заданных на границе. Элементы матрицы формы выражаются через многочлены Чебышёва, матрица обратима и такова, что обратная матрица имеет трехдиагональный вид. Эта особенность позволяет получить для спектра матрицы верхние и нижние оценки, не зависящие от размерности N. Данное обстоятельство позволяет провести исследование на качество аппроксимации для разных размерностей N и весовых коэффициентов ω∈[-1,1]. Показано, что наилучшее приближение дает параметр ω=0, а невязка стремится к нулю с ростом N.

    In the previous paper of the author the parameter family of finite-dimensional spaces of special quadratic splines of Lagrange's type has been defined. In each space, as a solution to the initial-boundary problem for the simplest wave equation, we have proposed the optimal spline, which gives the smallest residual. We have obtained exact formulas for coefficients of this spline and its residual. The formula for coefficients of this spline is a linear form of initial finite differences. The formula for the residual is a positive definite quadratic form of these quantities, but because of its bulkiness it is ill-suited for analyzing of the approximation quality of the input problem at the variation with the parameters.

    For the purposes of the present paper, we have obtained an alternative representation for the residual, which is the positive definite quadratic form of the new finite differences defined on the boundary. The elements of the matrix of form are expressed in terms of Chebyshev's polynomials, the matrix is invertible and the inverse matrix has a tridiagonal form. This feature allows us to obtain, for the spectrum of the matrix, upper and lower bounds that are independent of the dimension N. Said fact allows us to make a study of the quality of approximation for different dimensions N and weights ω∈[-1,1]. It is shown that the parameter ω=0 gives the best approximation and the residual tends to zero as N increasing.

  10. В предыдущей работе авторов определено параметрическое семейство конечномерных пространств специальных квадратичных сплайнов лагранжевого типа. В каждом пространстве в качестве решения начально-граничной задачи для простейшего уравнения теплопроводности предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей. Формула для невязки представляет собой положительно определенную квадратичную форму от этих же величин, однако из-за своей громоздкости она плохо приспособлена для анализа качества аппроксимации исходной задачи при варьировании параметрами.

    Получено альтернативное представление для невязки, представляющее собой сумму двух положительно определенных квадратичных форм от новых конечных разностей, заданных на границе. Матрица первой формы имеет второй порядок и очевидный спектр. Элементы второй матрицы порядка N + 1 выражаются через многочлены Чебышева, матрица обратима и такова, что обратная матрица имеет трехдиагональный вид. Эта особенность позволяет получить для спектра матрицы верхние и нижние оценки, не зависящие от размерности N. Данное обстоятельство позволяет провести исследование на качество аппроксимации для разных размерностей N и весовых коэффициентов ω ∈ [−1, 1]. Показано, что наилучшее приближение дает параметр ω = 0, а невязка стремится к нулю с ростом N.

    In the previous paper of the authors the parameter family of finite-dimensional spaces of special quadratic splines of Lagrange’s type has been defined. In each space, as a solution to the initial-boundary problem for the simplest heat conduction equation, we have proposed the optimal spline, which gives the smallest residual. We have obtained exact formulas for coefficients of this spline and its residual. The formula for coefficients of this spline is a linear form of initial finite differences. The formula for the residual is a positive definite quadratic form of these quantities, but because of its bulkiness it is ill-suited for analyzing of the approximation quality of the input problem at the variation with the parameters.

    For the purposes of the present paper, we have obtained an alternative representation for the residual, which is the sum of two positive definite quadratic forms of the new finite differences defined on the boundary. The matrix of the first form has second order and the apparent spectrum. The elements of the second matrix of order N + 1 are expressed in terms of Chebyshev’s polynomials, the matrix is invertible and the inverse matrix has a tridiagonal form. This feature allows us to obtain, for the spectrum of the matrix, upper and lower bounds that are independent of the dimension N. Said fact allows us to make a study of the quality of approximation for different dimensions N and weights ω ∈ [−1, 1]. It is shown that the parameter ω = 0 gives the best approximation and the residual tends to zero as N increasing.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref