Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'method of boundary functions':
Найдено статей: 29
  1. Данная работа посвящена постановке и исследованию однозначной разрешимости краевых задач (типа задачи Дарбу, задачи Трикоми) для нагруженного интегро-дифференциального уравнения третьего порядка с гиперболическим и параболо-гиперболическим оператором. Существование и единственность решения краевой задачи доказана методом интегральных уравнений. Задачи эквивалентным образом сводятся к интегральным уравнениям Вольтерра со сдвигом. При достаточных условиях на заданные функции и коэффициенты доказывается однозначная разрешимость полученных интегральных уравнений.

    In this paper, the unique solvability of the boundary value problems (of a type similar to the Darboux problem and the Tricomi problem) of a loaded third order integro-differential equation with hyperbolic and parabolic-hyperbolic operators is proved by method of integral equations. The problem is similarly reduced to a Volterra integral equation with a shift. Under sufficient conditions for given functions and coefficients the unique solvability is proved for the solution of obtained integral equations.

  2. Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.

    In this paper we study a boundary value problem for the fourth order partial differential equation with the lowest term in a rectangular domain. For the solution of the problem a priori estimate is obtained. From a priori estimate the uniqueness of the solution of the problem follows. For the proof of the solvability of this problem we use the method of separation of variables. The solvability of this problem is reduced to the Fredholm integral equation of the second kind with respect to unknown function. Integral equation is solved by the method of successive approximations. We find the sufficient conditions for the absolute and uniform convergence of series representing the solution of the problem and the series obtained by differentiation four times with respect x and two times with respect to t.

  3. Рассмотрено применение барицентрического метода для численного решения задач Дирихле и Неймана для уравнения Гельмгольца в ограниченной односвязной области $\Omega\subset\mathbb{R}^2$. Основное допущение в решении заключается в задании границы $\Omega$ в кусочно-линейном представлении. Отличительная особенность барицентрического метода состоит в порядке формирования глобальной системы векторных базисных функций для $\Omega$ через барицентрические координаты. Установлены существование и единственность решения задач Дирихле и Неймана для уравнения Гельмгольца барицентрическим методом и определена оценка скорости сходимости. Уточнены особенности алгоритмической реализации метода.

    The application of the barycentric method for the numerical solution of Dirichlet and Neumann problems for the Helmholtz equation in the bounded simply connected domain $\Omega\subset\mathbb{R}^2$ is considered. The main assumption in the solution is to set the $\Omega$ boundary in a piecewise linear representation. A distinctive feature of the barycentric method is the order of formation of a global system of vector basis functions for $\Omega$ via barycentric coordinates. The existence and uniqueness of the solution of Dirichlet and Neumann problems for the Helmholtz equation by the barycentric method are established and the convergence rate estimate is determined. The features of the algorithmic implementation of the method are clarified.

  4. В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.

    This work studies direct initial boundary value and inverse coefficient determination problems for a one-dimensional partial differential equation with multi-term orders fractional Riemann–Liouville derivatives. The unique solvability of the direct problem is investigated and a priori estimates for its solution are obtained in weighted spaces, which will be used for studying the inverse problem. Then, the inverse problem is equivalently reduced to a nonlinear integral equation. The fixed-point principle is used to prove the unique solvability of this equation.

  5. В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.

    В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.

    С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.

    Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.

    We consider the Cauchy problem for the system of quasi-linear first order equations of a special form. The system is symmetric, the state variable is n-dimensional. The considered Cauchy problem is deduced from the Cauchy problem for the Hamilton-Jacobi-Bellman equation by means of the operation of differentiation of this equation and the boundary condition with respect to the variable xi. It is assumed that the Hamiltonian and the initial condition are continuously differentiable functions. The Hamiltonian is convex with respect to the adjoint variable.

    The paper presents a new approach to the definition of the generalized solution of the system of quasi-linear first order equations. The generalized solution belongs to the class of multivalued functions with convex compact values. We prove the existence, uniqueness and stability theorems. The semigroup property for the proposed generalized solution is obtained. It is shown that the potential for generalized solutions of quasi-linear equations coincides with the unique minimax/viscosity solution of the corresponding Cauchy problem for the Hamilton-Jacobi-Bellman equation, and at the points of differentiability of the minimax solution its gradient coincides with the generalized solution of the Cauchy problem. Properties of the generalized solutions of the Cauchy problem for a system of quasi-linear equations are obtained on the basis of this connection. In particular, it is shown that the introduced generalized solution coincides with the superdifferential of the minimax solution of the Cauchy problem and is singlevalued almost everywhere.

    The structure of the set of points at which the minimax solution is not differentiable is described by using the characteristics of the Hamilton-Jacobi-Bellman equation.

    It is shown that the property of the generalized solution of the quasilinear equation with a scalar state variable proposed by O.A. Oleinik, can be extended to the case of the system of quasi-linear equations under consideration.

  6. Рассматривается обобщенное уравнение Курамото-Сивашинского в случае, когда неизвестная функция зависит от двух пространственных переменных. Такой вариант данного уравнения используется в качестве математической модели формирования неоднородного рельефа на поверхности полупроводников под воздействием потока ионов. В работе данное уравнение изучается вместе с однородными краевыми условиями Неймана в трех областях: прямоугольнике, квадрате и равнобедренном треугольнике. Изучен вопрос о локальных бифуркациях при смене устойчивости пространственно однородными состояниями равновесия. Показано, что в данных трех краевых задачах реализуются послекритические бифуркации и в их результате в каждой из трех изучаемых краевых задач бифурцируют пространственно неоднородные решения. Для них получены асимптотические формулы. Выявлена зависимость характера бифуркаций от выбора, геометрии области. В частности, определен вид зависимости от пространственных переменных. Изучен вопрос об устойчивости, в смысле определения А.М. Ляпунова, найденных пространственно неоднородных решений. Анализ бифуркационных задач использовал известные методы теории динамических систем с бесконечномерным фазовым пространством: интегральных (инвариантных) многообразий, нормальных форм Пуанкаре-Дюлака в сочетании с асимптотическими методами.

    The generalized Kuramoto-Sivashinsky equation in the case when the unknown function depends on two spatial variables is considered. This version of the equation is used as a mathematical model of formation of nonhomogeneous relief on a surface of semiconductors under ion beam. This equation is studied along with homogeneous Neumann boundary conditions in three regions: a rectangle, a square, and an isosceles triangle. The problem of local bifurcations in the case when spatially homogeneous equilibrium states change stability is studied. It is shown that for these three boundary value problems post-critical bifurcations occur and, as a result, spatially nonhomogeneous solutions bifurcate in each of these boundary value problems. For them asymptotic formulas are obtained. The dependence of the nature of bifurcations on the choice and geometry of the region is revealed. In particular, the type of dependence on spatial variables is determined. The problem of Lyapunov stability of spatially nonhomogeneous solutions is studied. Well-known methods from dynamical systems theory with an infinite-dimensional phase space: integral (invariant) manifolds, normal Poincare-Dulac forms in combination with asymptotic methods are used to analyze the bifurcation problems.

  7. Работа посвящена исследованию разрешимости обратной краевой задачи с неизвестным коэффициентом и правой частью, зависящей от времени, для линеаризованного уравнения Бенни-Люка с несамосопряженными краевыми и с дополнительными интегральными условиями. Задача рассматривается в прямоугольной области. Дается определение классического решения поставленной задачи. Сначала рассматривается вспомогательная обратная краевая задача и доказывается ее эквивалентность (в определенном смысле) исходной задаче. Для исследования вспомогательной обратной краевой задачи сначала используется метод разделения переменных. После применения формальной схемы метода разделения переменных решение прямой краевой задачи (при заданной неизвестной функции) сводится к решению задачи с неизвестными коэффициентами. После этого решение задачи сводится к решению некоторой счетной системы интегро-дифференциальных уравнений относительно неизвестных коэффициентов. В свою очередь, последняя система относительно неизвестных коэффициентов записывается в виде одного интегро-дифференциального уравнения относительно искомого решения. Затем, используя соответствующие дополнительные условия обратной вспомогательной краевой задачи, для определения неизвестных функций получаем систему двух нелинейных интегральных уравнений. Таким образом, решение вспомогательной обратной краевой задачи сводится к системе из трех нелинейных интегро-дифференциальных уравнений относительно неизвестных функций. Строится конкретное банахово пространство. Далее, в шаре из построенного банахова пространства с помощью сжатых отображений доказывается разрешимость системы нелинейных интегро-дифференциальных уравнений, которая также является единственным решением вспомогательной обратной краевой задачи. С использованием эквивалентности задач доказывается существование и единственность классического решения исходной задачи.

    The paper investigates the solvability of an inverse boundary-value problem with an unknown coefficient and the right-hand side, depending on the time variable, for the linearized Benney-Luke equation with non-self-adjoint boundary and additional integral conditions. The problem is considered in a rectangular domain. A definition of the classical solution of the problem is given. First, we consider an auxiliary inverse boundary-value problem and prove its equivalence (in a certain sense) to the original problem. To investigate the auxiliary inverse boundary-value problem, the method of separation of variables is used. By applying the formal scheme of the variable separation method, the solution of the direct boundary problem (for a given unknown function) is reduced to solving the problem with unknown coefficients. Then, the solution of the problem is reduced to solving a certain countable system of integro-differential equations for the unknown coefficients. In turn, the latter system of relatively unknown coefficients is written as a single integro-differential equation for the desired solution. Next, using the corresponding additional conditions of the inverse auxiliary boundary-value problem, to determine the unknown functions, we obtain a system of two nonlinear integral equations. Thus, the solution of an auxiliary inverse boundary-value problem is reduced to a system of three nonlinear integro-differential equations with respect to unknown functions. A special type of Banach space is constructed. Further, in a ball from a constructed Banach space, with the help of contracted mappings, we prove the solvability of a system of nonlinear integro-differential equations, which is also the unique solution to the auxiliary inverse boundary-value problem. Finally, using the equivalence of these problems the existence and uniqueness of the classical solution of the original problem are proved.

  8. На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации потенциала двойного слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho=\left(r^2-d^2\right)^{1/2}$, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^5$, а также на самой границе. Также доказано, что использование для вычисления интегралов стандартных квадратурных формул не нарушает равномерной кубической сходимости аппроксимаций прямого значения потенциала на границе класса $C^6$. При некоторых упрощениях доказано, что использование для вычисления интегралов стандартных квадратурных формул влечет отсутствие равномерной сходимости аппроксимаций потенциала внутри области вблизи любой граничной точки. Теоретические выводы подтверждены результатами численного решения задачи Дирихле для уравнения Лапласа в круговой области.

    On the basis of piecewise quadratic interpolation, semi-analytical approximations of the double layer potential near and on the boundary of a two-dimensional domain are obtained. To calculate the integrals formed after the interpolation of the density function, exact integration with respect to the variable $\rho=\left(r^2-d^2\right)^{1/2}$ is used, where $d$ and $r$ are the distances from the observed point to the boundary of the domain and to the boundary point of integration, respectively. The study proves the stable convergence of such approximations with the cubic velocity uniformly near the boundary of the class $C^5$, and also on the boundary itself. It is also proved that the use of standard quadrature formulas for calculating the integrals does not violate the uniform cubic convergence of approximations of the direct value of the potential on the boundary of the class $C^6$. With some simplifications, it is proved that the use of standard quadrature formulas for calculating the integrals entails the absence of uniform convergence of potential approximations inside the domain near any boundary point. The theoretical conclusions are confirmed by the results of the numerical solution of the Dirichlet problem for the Laplace equation in a circular domain.

  9. Проведен численный анализ сопряженной естественной конвекции в пористой среде, насыщенной газом, окруженной твердыми стенками конечной толщины при наличии локального источника тепла. Краевая задач сформулирована в безразмерных переменных "функция тока - вектор завихренности - температура" и решена методом конечных разностей. Установлены масштабы влияние источника тепла, проницаемости внутреннего объема, фактора нестационарности и теплофизических характеристик ограждающих стенок на режимы течения и теплопереноса.

    Conjugate natural convection in a porous medium saturated with a gas surrounded by the finite thickness solid walls at presence of a local heat source has been numerically analyzed. Boundary problem has been formulated in dimensionless variables such as "stream function - vorticity vector - temperature" and it has been solved by finite difference method. The effect levels of the heat source, the medium permeability, the transient factor and the heat conductivity of the solid walls on flow patterns and heat transfer modes have been determined.

  10. В настоящей работе мы изучаем спектральную задачу для дифференциального оператора второго порядка с инволюцией и с краевыми условиями типа Дирихле. Построена функция Грина изучаемой краевой задачи. Получены равномерные оценки функций Грина рассматриваемых краевых задач. Установлена равносходимость разложений произвольной функции из класса $L_{1}(-1,1)$ по собственным функциям двух дифференциальных операторов второго порядка с инволюцией с краевыми условиями типа Дирихле. Мы используем интегральный метод, основанный на функции Грина дифференциального оператора второго порядка с инволюцией и со спектральным параметром. Как следствие из доказанной теоремы о равносходимости разложений по собственным функциям, мы доказываем базисность в пространстве $L_{2}(-1,1)$ собственных функций спектральной задачи с непрерывным комплекснозначным коэффициентом $q(x).$

    In the present paper we study the spectral problem for the second-order differential operators with involution and boundary conditions of Dirichlet type. The Green's function of this boundary problem is constructed. Uniform estimates of the Green's functions for the boundary value problems considered are obtained. The equiconvergence of eigenfunction expansions of two second-order differential operators with involution and boundary conditions of Dirichlet type for any function in $L_{2}(-1,1)$ is established. We use an integral method based on the application of the Green's function of a differential operator with involution and spectral parameter. As a corollary from the equiconvergence theorem, it is proved that the eigenfunctions of the spectral problem form the basis in $L_{2}(-1,1)$ for any continuous complex-valued coefficient $q(x)$.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref