Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'optimal boundary control':
Найдено статей: 7
  1. Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.

    Afanasova M.S., Obukhovskii V.V., Petrosyan G.G.
    On a generalized boundary value problem for a feedback control system with infinite delay, pp. 167-185

    We consider a non-local boundary value problem for a feedback control system described by a semilinear functional-differential inclusion of fractional order with infinite delay in a separable Banach space. The general principle of existence of solutions to the problem in terms of the difference from zero of the topological degree of the corresponding vector field is given. We prove a concrete example (Theorem 6) of the implementation of this general principle. The existence of an optimal solution to the posed problem is proved, which minimizes the given lower semicontinuous quality functional.

  2. Исследуется задача мультипликативного управления для стационарной диффузионно-дрейфовой модели зарядки полярного диэлектрика. Роль управления играет старший коэффициент в уравнении модели, имеющий смысл коэффициента диффузии электронов. Глобальная разрешимость краевой задачи и локальная единственность ее решения, а также разрешимость экстремальной задачи доказана в предыдущих работах авторов. В настоящей работе для задачи управления выводится система оптимальности и устанавливаются условия локальной регулярности множителя Лагранжа. На основе анализа данной системы доказывается локальная единственность решения задачи мультипликативного управления для конкретных функционалов качества.

    The multiplicative control problem for a stationary diffusion-drift model of charging a polar dielectric is studied. The role of control is played by a leading coefficient in the model equation, which has the meaning of the electron diffusion coefficient. The global solvability of the boundary value problem and the local uniqueness of its solution, as well as the solvability of the extremum problem under consideration, have been proved in the previous papers of the authors. In this paper, an optimality system is derived for the control problem and local regularity conditions for the Lagrange multiplier are established. Based on the analysis of this system, the local uniqueness of the multiplicative control problem's solution for specific cost functionals is proved.

  3. Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.

    A convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.

  4. Для задачи оптимального управления линейным параболическим уравнением с распределенным, начальным и граничным управлениями и с операторным полуфазовым ограничением типа равенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собой регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации. Приводятся результаты модельных расчетов при решении конкретной задачи оптимального управления, иллюстрирующих работу алгоритма, основанного на регляризованном итерационном принципе максимума Понтрягина. В качестве конкретной оптимизационной задачи рассмотрена задача поиска минимальной по норме тройки управлений при операторном ограничении-равенстве в финальный момент времени, или, другими словами, обратная задача финального наблюдения по поиску ее нормального решения.

    The stable sequential Pontryagin maximum principle or, in other words, the regularized Pontryagin maximum principle in iterative form is formulated for the optimal control problem of a linear parabolic equation with distributed, initial and boundary controls and operator semiphase equality constraint. The main difference between it and the classical Pontryagin maximum principle is that, firstly, it is formulated in terms of minimizing sequences, secondly, the iterative process occurs in dual space, and thirdly, it is resistant to error of raw data and gives a minimizing approximate solution in the sense of J. Warga. So it is a regularizing algorithm. The proof of the regularized Pontryagin maximum principle in iterative form is based on the dual regularization methods and iterative dual regularization. The results of model calculations of the concrete optimal control problem illustrating the work of the algorithm based on the regularized iterative Pontryagin maximum principle are presented. The problem of finding a control triple with minimal norm under a given equality constraint at the final instant of time or, in other words, the inverse final observation problem of finding a normal solution is used as a concrete model optimal control problem.

  5. Излагаются элементы численно-аналитического подхода к построению решения для одного класса задач быстродействия на плоскости. Предложены алгоритмы конструирования множества негладкости функции оптимального результата. Выявлена структура множеств Лебега этой функции. Обоснованы формулы для точек прекращения сингулярных кривых. Приведены результаты моделирования решений задач быстродействия для случая, когда целевое множество является невыпуклым и имеет кусочно-гладкую границу. Работа продолжает исследование обобщенных решений задач Дирихле для уравнений типа Гамильтона-Якоби.

    Singular lines and nonsmooth singularities of cost function in one class of optimal-time problems are studied.  Equations for their end points are written. Their relation with the geometry of the goal set is shown. Connection of the optimal-time problem and the first order PDE with boundary condition is ascertained.  Examples of some problems' solving and graphs of solutions are given.

  6. Рассматривается терминальная задача оптимизации нелинейной управляемой системы Гурса-Дарбу с полной каратеодориевской правой частью уравнения в случае, когда необходимо искать решения системы в классе функций с суммируемой в некоторой степени $p>1$ смешанной производной. Показывается, что если правая часть аффинна по производным и они в ней аддитивно отделены от управления, то вырождение поточечного принципа максимума (необходимого условия оптимальности первого порядка при игольчатом варьировании управления) всегда является сильным, то есть на особом управлении принципа максимума одновременно с принципом максимума вырождаются и условия оптимальности второго порядка. Приводятся необходимые условия оптимальности особых управлений в этой ситуации, обобщающие известные сходные условия, относящиеся к случаю решений с ограниченной смешанной производной и более гладких правых частей уравнений.

    The paper deals with the terminal optimization problem connected with the Goursat-Darboux control system. The right-hand side of the differential equation is a full nonlinear Caratheodory function. We consider the case in which solutions of the Goursat-Darboux system necessarily belong to a class of functions with $p$-integrable (for some $p>1$) mixed derivatives. In our case a choice of this class is defined by boundary functions. We study singular controls in the sense of the pointwise maximum principle that are controls for which this principle is strong degenerate, i.e., degenerate together with second-order optimality conditions. It is shown that for strong degeneration of the pointwise maximum principle it is sufficient that right-hand side with respect to state derivatives is affine and these derivatives and control are separated additively. Necessary optimality conditions of the singular controls are given for this case. These conditions generalize similar necessary optimality conditions which were obtained for more smooth right-hand sides in the case of solutions with bounded mixed derivatives.

  7. Рассматриваются задачи управления на бесконечном промежутке времени со свободным правым концом. Получены необходимые условия сильной оптимальности. Сам метод доказательства фактически следует классической работе Халкина, а построенное в работе краевое условие на бесконечности является усилением условия, предложенного Сейерстадом. Построенная в работе полная система соотношений принципа максимума позволяет выписать для сопряженной переменной выражение в виде несобственного интеграла, зависящего лишь от разворачивающейся траектории. С.М. Асеев, А.В. Кряжимский, В.М. Вельев получали такое выражение в качестве необходимого условия в некоторых классах задач управления. Сильная оптимальность в ряде случаев позволяет создать переопределенную систему соотношений; в работе получены условия, достаточные для этого. Разобран пример.

    In the paper we consider the infinite horizon control problems in the free end case. We obtain the necessary conditions of strong optimality. The method of the proof actually follows the classic paper by Halkin, and the boundary condition for infinity that we construct in our paper is a stronger variety of the Seierstad condition. The complete system of relations of the maximum principle that was obtained in the paper allows us to write the expression for the adjoint variable in the form of improper integral that depends only on the developing trajectory. S.M. Aseev, A.V. Kryazhimskii, and V.M. Veliov obtained the similar condition as a necessary condition for certain classes of control problems. As we note in our paper, the obtained conditions of strong optimality lead us to a redefined system of relations for sufficiently broad class of control problems. An example is considered.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref