Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Бифуркационное исследование перехода к хаосу в колебательной системе движения пластинки в жидкости, с. 3-18Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова-Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова-Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.
движение тела в жидкости, особая точка, предельный цикл, гомоклиническая траектория, каскад бифуркаций, аттрактор, хаос, старший показатель Ляпунова
Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid, pp. 3-18We consider the model of chaotic motion of a plate in a viscous fluid, described by an oscillatory system of three ordinary differential equations with a quadratic nonlinearity. In the course of the bifurcation study of singular points of the system, maps of the types of singular points are constructed and a surface equation is found in the space of dissipation and circulation parameters on which the Andronov-Hopf bifurcation of the limit cycle creation takes place. With a further change in the parameters near the Andronov-Hopf surface, cascades of the period doubling doubling of the Feigenbaum cycle and the Sharkovsky subharmonic cascades, ending with the creation of a cycle of period three, are found. Expressions are obtained for saddle numbers of the saddle-node and two saddle-foci and their plots are plotted in the parameter space. It is shown that homoclinic cascades of bifurcations are realized in the system with the destruction of homoclinic trajectories of saddle-foci. The existence of homoclinic trajectories of saddle-foci is proved by a numerical-analytical method. The graphs of the largest Lyapunov exponent and the bifurcation diagrams show that when the dissipation coefficients change, the system switches to chaos in several stages.
-
Для класса динамических систем, включающего в себя уравнения колебаний упругой балки на упругом основании, автономные системы обыкновенных дифференциальных уравнений, системы гидродинамического типа и др., изложена процедура приближенного вычисления амплитуд периодических решений, бифурцирующих из точек покоя при наличии резонансов.
Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances, pp. 12-22The procedure of approximate calculation of amplitudes for periodic solutions bifurcating from rest points in the presence of resonance is studied for a class of dynamical systems. This class includes equations of spring beam oscillations located on elastic foundations, autonomous systems of ordinary differential equations, hydrodynamical systems etc. The methodological basis of the procedure is the Lyapunov-Schmidt method considered in the context of general theory of smooth SO(2)-equivariant Fredholm equations (in infinite dimensional Banach spaces). The topic of the paper develops and extends the earlier research of B.M Darinsky, Y.I. Sapronov, and V.A. Smolyanov.
-
Для общей краевой задачи функционально-дифференциального уравнения получены условия непрерывной зависимости решения от параметров. Результаты применены к исследованию корректности линейной общей краевой задачи для нелинейного дифференциального уравнения с отклоняющимся аргументом и непрерывной зависимости периодических решений управляемых систем от значений управления и отклонения аргумента.
функционально-дифференциальные уравнения, краевые задачи, непрерывная зависимость решения от параметров, периодические решения управляемых системConditions for continuous dependence on parameters of solution of a general boundary value problem are obtained for a functional-differential equation. The results are applied to investigation of a correctness of a linear general boundary value problem for the nonlinear differential equation with divergentargument and to problem of continuous dependence of periodic solutions of controllable system on control and divergence values.
-
Для билинейной управляемой системы с периодическими коэффициентами получены достаточные условия равномерной глобальной асимптотической стабилизации нулевого решения. Доказательство основано на применении теоремы Красовского об асимптотической устойчивости в целом нулевого решения для периодических систем. Стабилизирующее управление построено по принципу обратной связи. Оно имеет вид квадратичной формы от фазовой переменной и является периодическим по времени.
глобальная асимптотическая устойчивость, стабилизация, функция Ляпунова, билинейные системы, периодические системы.Sufficient conditions for uniform global asymptotic stabilization of the origin are obtained for bilinear control systems with periodic coefficients. The proof is based on the use of the Krasovsky theorem on global asymptotic stability of the origin for periodic systems. The stabilizing control function is feedback control constructed as the quadratic form of the phase variables and depends on time periodically.
-
Бифуркации в системе Рэлея с диффузией, с. 499-514Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.
Bifurcations in a Rayleigh reaction-diffusion system, pp. 499-514We consider a reaction-diffusion system with a cubic nonlinear term, which is a special case of the Fitzhugh-Nagumo system and an infinite-dimensional version of the classical Rayleigh system. We assume that the spatial variable belongs to an interval, supplemented with Neumann boundary conditions. It is well-known that in that specific case there exists a spatially-homogeneous oscillatory regime, which coincides with the time-periodic solution of the classical Rayleigh system. We show that there exists a countable set of critical values of the control parameter, where each critical value corresponds to the branching of new spatially-inhomogeneous auto-oscillatory or stationary regimes. These regimes are stable with respect to small perturbations from some infinite-dimensional invariant subspaces of the system under study. This, in particular, explains the convergence of numerical solution to zero, periodic or stationary solution, which is observed for some specific initial conditions and control parameter values. We construct the asymptotics for branching solutions by using Lyapunov-Schmidt reduction. We find explicitly the first terms of asymptotic expansions and study the formulas for general terms of asymptotics. It is shown that a soft loss of stability occurs in invariant subspaces. We study numerically the evolution of secondary regimes due to the increase of control parameter values and observe that the secondary periodic solutions are transformed into stationary ones as the control parameter value increases. Next, the amplitude of stationary solutions continues to grow and the solution asymptotically converges to the square wave regime.
-
Рассматривается динамическая система сдвигов в пространстве ℜ непрерывных функций, принимающих значения в полном метрическом пространстве (clos(Rn), ρcl) непустых замкнутых подмножеств в Rn. Расстояние между функциями в этом пространстве определяется с помощью аналога метрики Бебутова в пространстве вещественных функций, определенных и непрерывных на всей числовой оси. Показано, что для компактности замыкания траектории точки в ℜ достаточно, чтобы исходная функция была ограничена и равномерно непрерывна в метрике ρcl. Как следствие, доказано, что замыкание траектории рекуррентного движения или траектории почти периодического движения в ℜ компактно.
пространство многозначных функций с замкнутыми образами, динамическая система сдвигов, замыкание траектории.
Dynamical system of translations in the space of multi-valued functions with closed images, pp. 28-33In the work there is considered the dynamical system of translations in the space ℜ of continuous multi-valued functions with images in complete metric space (clos(Rn), ρcl) of nonempty closed subsets of Rn. The distance between such functions is measured by means of the metric analogous to the Bebutov metric constructed for the space of continuous real-valued functions defined on the whole real line. It is shown that for compactness of the trajectory’s closure in ℜ it is sufficient to have initial function bounded and uniformly continuous in the ρcl metric. As consequence, it is also proved that the trajectory’s closure of a recurrent or an almost periodic motion is compact in ℜ.
-
Доказано, что линейная управляемая система $$ \dot x=A(t)x+B(t)u, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \quad u\in\mathbb{R}^m, \qquad\qquad (1) $$ с коэффициентами в форме Хессенберга при достаточно широких условиях на коэффициенты обладает свойством равномерной полной управляемости в смысле Калмана. Показана существенность для некоторых полученных достаточных условий. Установлены следствия для квазидифференциальных уравнений. Исследуется задача о глобальном управлении асимптотическими инвариантами системы $$ \dot x=(A(t)+B(t)U)x, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \qquad \qquad \qquad \qquad (2) $$ полученной замыканием системы $(1)$ обратной связью $u=Ux$. В известных результатах С.Н. Поповой ослабляются условия на коэффициенты. Для системы $(2)$ с коэффициентами в форме Хессенберга, с помощью результатов С.Н. Поповой, получены достаточные условия глобальной скаляризуемости и глобальной управляемости показателей Ляпунова, а в случае когда $A(\cdot)$ и $B(\cdot)$ - $\omega$-периодические и достаточные условия глобальной ляпуновской приводимости.
линейная управляемая система, равномерная полная управляемость, система в форме Хессенберга, глобальное управление асимптотическими инвариантамиWe prove that a linear control system $$ \dot x=A(t)x+B(t)u, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \quad u\in\mathbb{R}^m, \qquad \qquad (1) $$ with matrix coefficients of the Hessenberg form is uniformly completely controllable in the sense of Kalman under rather weak conditions imposed on coefficients. It is shown that some obtained sufficient conditions are essential. Corollaries are derived for quasi-differential equations. We construct feedback control $u=Ux$ for the system $(1)$ and study the problem of global control over asymptotic invariants of the closed-loop system $$ \dot x=(A(t)+B(t)U)x, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n. \qquad \qquad \qquad \qquad (2) $$ The conditions on coefficients are weakened in the known results of S.N. Popova. For the system $(2)$ with matrix coefficients of the Hessenberg form, the obtained results and the results of S.N. Popova are used to receive sufficient conditions for global reducibility to systems of scalar type and for global control over Lyapunov exponents and moreover, for global Lyapunov reducibility in the case of periodic $A(\cdot)$ and $B(\cdot)$.
-
В работе рассматривается краевая задача для нелинейного эволюционного уравнения в частных производных, приведенная в перенормированном виде. Данная краевая задача возникает в механике роторных систем и описывает поперечные колебания вращающегося ротора постоянного сечения из вязкоупругого материала, концы которого шарнирно закреплены. Изучен вопрос об устойчивости нулевого состояния равновесия, найдено критическое значение скорости вращения ротора, при превышении которого возникают незатухающие колебания. Найдены точные решения изучаемой краевой задачи в виде одномодовых по пространственной переменной и периодической по времени функций. Выведены условия устойчивости таких решений, а также в ряде случаев дан анализ условий устойчивости. В работе показано отсутствие многомодовых периодических по времени решений. Проанализированы базовые, но важные с прикладной точки зрения частные случаи данной нелинейной краевой задачи. Все результаты анализа нелинейной краевой задачи носят аналитический характер. Их вывод опирается на качественную теорию бесконечномерных динамических систем.
We consider a boundary-value problem for the nonlinear evolution partial differential equation, given in renormalized form. This problem appears in rotary system mechanics and describes the transverse vibrations of the rotating rotor of a constant cross-section from a viscoelastic material whose ends are pivotally fixed. The question of the stability of the zero equilibrium state is studied, the critical value of the rotor speed is found, above which continuous oscillations occur. Exact solutions of the boundary-value problem are found in the form of single-mode functions with respect to the spatial variable and functions periodic in time. The stability conditions for such solutions are derived, and in some cases an analysis of the stability conditions is given. The paper shows the absence of multimode time-periodic solutions. The basic and important (from an applied point of view) particular cases of this nonlinear boundary-value problem are analyzed. All the results of the analysis of a nonlinear boundary-value problem are analytical. Their conclusion is based on the qualitative theory of infinite-dimensional dynamical systems.
-
Изучается задача о воздействии двухчастотных квазипериодических возмущений на системы, близкие к произвольным нелинейным двумерным гамильтоновым в случае, когда соответствующие возмущенные автономные системы имеют двойной предельный цикл. Ее решение имеет важное значение как для теории синхронизации колебаний, так и для теории бифуркаций динамических систем. В случае соизмеримости собственной частоты невозмущенной системы с частотами квазипериодического возмущения имеет место резонанс. Выводятся усредненные системы, позволяющие установить структуру резонансной зоны, то есть описать поведение решений в окрестностях индивидуальных резонансных уровней. Исследование этих систем позволяет установить возможные бифуркации, возникающие при отклонении резонансного уровня от уровня невозмущенной системы, порождающего двойной предельный цикл в возмущенной автономной системе. Полученные теоретические результаты применяются при исследовании двухчастотного квазипериодически возмущенного уравнения маятникового типа и иллюстрируются при помощи численных вычислений.
The problem of the effect of two-frequency quasi-periodic perturbations on systems close to arbitrary nonlinear two-dimensional Hamiltonian ones is studied in the case when the corresponding perturbed autonomous systems have a double limit cycle. Its solution is important both for the theory of synchronization of nonlinear oscillations and for the theory of bifurcations of dynamical systems. In the case of commensurability of the natural frequency of the unperturbed system with frequencies of quasi-periodic perturbation, resonance occurs. Averaged systems are derived that make it possible to ascertain the structure of the resonance zone, that is, to describe the behavior of solutions in the neighborhood of individual resonance levels. The study of these systems allows determining possible bifurcations arising when the resonance level deviates from the level of the unperturbed system, which generates a double limit cycle in a perturbed autonomous system. The theoretical results obtained are applied in the study of a two-frequency quasi-periodic perturbed pendulum-type equation and are illustrated by numerical computations.
-
Статистические характеристики множества достижимости и периодические процессы управляемых систем, с. 34-43Изучаются статистические характеристики множества достижимости A(t,σ,X) управляемой системы
ẋ = f(ht,x,u), (t,σ,x,u) ∈ R × Σ × Rn × Rm, (1)
которая параметризована с помощью топологической динамической системы (Σ,ht). Получены оценки снизу таких характеристик, как относительная частота поглощения, верхняя и нижняя относительные частоты поглощения множества достижимости системы (1) заданным множеством M, а также достаточные условия статистической инвариантности множества M относительно управляемой системы. Исследуются условия, которым должна удовлетворять система (1) и множество X, чтобы для заданных σ ∈ Σ и χ0 ∈ (0, 1] относительная частота поглощения множества достижимости A(t,σ,X) системы (1) множеством M была не менее χ0. Результаты работы иллюстрируются на примере управляемой системы, которая описывает периодические процессы в химическом реакторе.
управляемые системы, динамические системы, дифференциальные включения, статистически инвариантные множества.
Statistical characteristics of attainability set and periodic processes of control systems, pp. 34-43We investigate the statistical characteristics of attainability set A(t,σ,X) of control system
ẋ = f(ht,x,u), (t,σ,x,u) ∈ R × Σ × Rn × Rm, (1)
which is parametrized by means of topological dynamic system (Σ,ht). We obtained the lower estimations for such characteristics as the relative frequency of containing, the upper and lower relative frequencies of containing of attainability set of the system (1) in the given set M as well as new sufficient conditions of statistical invariance of the set M with respect to control system. We received the conditions for system (1) and set X at which for given σ ∈ Σ и χ0 ∈ (0, 1] the relative frequency of containing of attainability set A(t,σ,X) of systems (1) in the set M not less χ0. Results of the work are illustrated by the example of control system which describes periodic processes in a chemical reactor.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.