Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'product':
Найдено статей: 25
  1. Рассматривается игровая задача на максимин функции платы, определенной на произведении множеств притяжения терминальных состояний систем первого и второго игрока. Данные множества притяжения найдены с помощью конструкций расширения в классе конечно-аддитивных мер.

    We consider a game problem of maximin of cost function defined on the product of attraction sets of players’ dynamic systems terminal positions. These sets are constructed using the extension in the class of finitely additive measures.

  2. Работа посвящена изучению оценок скалярных произведений векторных полей и их применению при доказательстве разрешимости задач математической физики. В работе доказаны оценки скалярных произведений векторных полей в весовых функциональных пространствах суммируемых функций. В качестве примера применения таких оценок доказана разрешимость задачи об определении стационарного магнитного поля в трёхмерном евклидовом пространстве, содержащем ограниченную проводящую область. Также показана связь предложенной постановки задачи и соответствующей вариационной формулировки. Изучена возможность определения остальных неизвестных функций (электрического поля, объёмной плотности электрических зарядов) внутри проводящей подобласти.

    The paper is devoted to studying of estimations of scalar products of vector fields and their application in the proof of solvability for mathematical physics problems. The estimations of scalar products of vector field were proved in weighted functional spaces of summable functions. As an example of the application of such estimations there was proved the solvability for the problem of determination of stationary magnetic field in whole three-dimensional Euclidian space containing bounded conducting domain. The association between the proposed problem statement and the corresponding variational statement was shown too. There was investigated the possibility of determination of another unknown functions (electric field, volume density of electrical charge) inside the conducting domain.

  3. Жуковский В.И., Кудрявцев К.Н., Горбатов А.С.
    Равновесие по Бержу в модели олигополии Курно, с. 147-156

    В работе построено равновесие по Бержу в модели олигополии Курно. Проведено сравнение равновесий по Бержу и по Нэшу. Выявлены условия, при которых выигрыши игроков в ситуации равновесия по Бержу больше, чем их выигрыши в ситуации равновесия по Нэшу.

    Zhukovskii V.I., Kudryavtsev K.N., Gorbatov A.S.
    The Berge equilibrium in Cournot's model of oligopoly, pp. 147-156

    In many large areas of the economy (such as metallurgy, oil production and refining, electronics), the main competition takes place among several companies that dominate the market. The first models of such markets - oligopolies were described more than a hundred years ago in articles by Cournot, Bertrand, Hotelling. Modeling of oligopolies continues in many modern works. Moreover, in 2014 Nobel Prize in Economics “for his analysis of market power and regulation in sectors with few large companies” was received by Jean Tirole - the author of one of the best modern textbooks on the theory of imperfect competition “The Theory of Industrial Organization”. The main idea of all these publications, studying the behavior of oligopolies, is that every company is primarily concerned with its profits. This approach meets the concept of Nash equilibrium and is actively used in modeling the behavior of players in a competitive market. The exact opposite of such “selfish” equilibrium is “altruistic” concept of Berge equilibrium. In this approach, each player, without having to worry about himself, choose his actions (strategies) trying to maximize the profits of all other market participants. This concept called Berge equilibrium appeared in Russia in 1994 in reference to the France Claude Berge monograph published in 1957. The first works on the concept of Berge equilibrium belong to K.S. Vaisman and V.I. Zhukovskii. Once outside Russia, the concept of “Berge equilibrium” is slowly gaining popularity. To day, the number of publications related to this balance is already measured in tens. However, all of these items are limited to purely theoretical issues, or, in general, to psychology applications. Works devoted to the study of Berge equilibrium in economic problems, were not seen until now. It's probably a consequence of Martin Shubik's review (“… no attention is paid to the application to the economy. … the book is of little interest for economists”) of the Berge's book, it “scared” economists for a long time. However, it is not so simple. In this article, Berge equilibrium is considered in Cournot oligopoly, its relation to Nash equilibrium is studied. Cases are revealed in which players gain more profit by following the concept of Berge equilibrium, than by using strategies dictated by Nash equilibrium.

  4. Исследуются свойства правильных функций, а также ограниченных функций, имеющих не более чем счетное множество точек разрыва (названных $\sigma$-непрерывными). Доказана теорема об интегрируемости по Риману-Стилтьесу $\sigma$-непрерывных функций по непрерывным функциям ограниченной вариации, а также предельная теорема Хелли для таких интегрируемых и интегрирующих функций. Процесс интегрирования по Риману-Стилтьесу расширяется на случай интегрирования $\sigma$-непрерывных функций по произвольным функциям ограниченной вариации: вводится $(*)$-интеграл как сумма классического интеграла Римана-Стилтьеса по непрерывной части функции ограниченной вариации и суммы произведений значений интегрируемой функции на скачки интегрирующей. Таким образом, $(*)$-интеграл позволяет интегрировать разрывные функции по разрывным. Все свойства $(*)$-интеграла выводятся непосредственно из этого определения. Так, для $(*)$-интеграла доказывается формула интегрирования по частям, теорема о перемене порядка интегрирования, а также все необходимые для дальнейшегоприменения предельные теоремы, в том числе предельная теорема типа теоремы Хелли.

    In this paper, the properties of the regular functions and the so-called $\sigma$-continuous functions (i.e., the bounded functions for which the set of discontinuity points is at most countable) are studied. It is shown that the $\sigma$-continuous functions are Riemann-Stieltjes integrable with respect to continuous functions of bounded variation. Helly's limit theorem for such functions is also proved. Moreover, Riemann-Stieltjes integration of $\sigma$-continuous functions with respect to arbitrary functions of bounded variation is considered. To this end, a $(*)$-integral is introduced. This integral consists of two terms: (i) the classical Riemann-Stieltjes integral with respect to the continuous part of a function of bounded variation, and (ii) the sum of the products of an integrand by the jumps of an integrator. In other words, the $(*)$-integral makes it possible to consider a Riemann-Stieltjes integral with a discontinuous function as an integrand or an integrator. The properties of the (*)-integral are studied. In particular, a formula for integration by parts, an inversion of the order of the integration theorem, and all limit theorems necessary in applications, including a limit theorem of Helly's type, are proved.

  5. Рассматриваются пространства, всякие подпространства которых компактны. Будем называть такие пространства наследственно компактными. В работе рассматриваются вопросы о существовании и способах построения наследственно компактных T1-топологий. Доказано существование 2τ попарно несравнимых наследственно компактных T1-топологий на бесконечном множестве X мощности τ. Получены характеристики наследственно компактных пространств. Доказано, что тихоновское произведение конечного числа наследственно компактных T1-пространств является наследственно компактным T1-пространством. Доказано, что тихоновское произведение бесконечного числа неодноточечных наследственно компактных T1-пространств не является наследственно компактным.

    Voronov M.E.
    On compact T1-spaces, pp. 20-27

    We consider spaces, any subspaces of which are compact. We call such spaces hereditarily compact. The present work covers questions on the existence and methods of constructing hereditarily compact T1-topologies. We prove the existence of 2τ  pairwise incomparable hereditarily compact T1-topologies on an infinite set $X$ of power τ. The characteristics of hereditarily compact spaces are obtained. It is proved that the Tychonoff product of a finite number of hereditarily compact T1-spaces is a hereditarily compact T1-space, but the Tychonoff product of an infinite number of nonsingleton hereditarily compact T1-spaces is not hereditarily compact

  6. В работе вводится и исследуется подкласс $A_{n} (m,\beta,p,q,\lambda)$ однолистных функций с отрицательными коэффициентами, определяемый новым линейным оператором $J^\lambda$ в открытом единичном круге $\mathcal{U}=\{z \in \mathbb{C} : |z| < 1\}$. Основной задачей является изучение следующих свойств и характеристик: оценки коэффициентов, теоремы искажения, теоремы о замыкании, окрестность функции, радиусы звездообразности, выпуклости и почти выпуклости функций, принадлежащих классу $A_{n} (m,\beta,p,q,\lambda)$.

    The present paper introduces and studies the subclass $A_{n} (m,\beta,p,q,\lambda)$ of univalent functions with negative coefficients defined by new linear operator $J^\lambda$ in the open unit disk $\mathcal{U}=\{z \in \mathbb{C} : |z| < 1\}$. The main task is to investigate several properties such as coefficient estimates, distortion theorems, closure theorems. Neighborhood and radii of starlikeness, convexity and close-to-convexity of functions belonging to the class $A_{n} (m,\beta,p,q,\lambda)$ are studied.

  7. Грызлов А.А., Головастов Р.А., Бастрыков Е.С.
    Произведения пространств и сходимость последовательностей, с. 563-570

    По теореме Хьюитта–Марчевского–Пондишери тихоновское произведение $2^\omega$ сепарабельных пространств сепарабельно. Мы продолжаем исследовать проблему существования в тихоновском произведении $\prod\limits_{\alpha\in 2^\omega}X_\alpha$ сепарабельных пространств плотного счетного подмножества, не содержащего нетривиальных сходящихся последовательностей. Мы говорим, что последовательность $\lambda=\{x_n\colon n\in\omega\}$ является простой, если для каждого $x_n\in\lambda$ множество $\{n'\in\omega\colon x_{n'}=x_n\}$ конечно. Мы доказываем, что в произведении $\{Z_\alpha\colon\alpha\in 2^\omega\}$ сепарабельных пространств, где всякое $Z_\alpha$ $(\alpha\in\omega)$ содержит простую несходящуюся последовательность, есть счетное плотное множество $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, которое не содержит нетривиальных сходящихся в $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ последовательностей.

    Gryzlov A.A., Golovastov R.A., Bastrykov E.S.
    Products of spaces and the convergence of sequences, pp. 563-570

    By the Hewitt–Marczewski–Pondiczery theorem, the Tychonoff product of $2^\omega$ separable spaces is separable. We continue to explore the problem of the existence in the Tychonoff product $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ of $2^\omega$ separable spaces a dense countable subset, which does not contain non-trivial convergent sequences. We say that a sequence $\lambda=\{x_n\colon n\in\omega\}$ is simple, if, for every $x_n\in\lambda$, a set $\{n'\in\omega\colon x_{n'}=x_n\}$ is finite. We prove that in the product of separable spaces $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, such that $Z_\alpha$ $(\alpha\in 2^\omega)$ contains a simple nonconvergent sequence, there is a countable dense set $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, which does not contain non-trivial convergent in $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ sequences.

  8. Бельских Ю.А., Жуковский В.И., Самсонов С.П.
    Альтруистическое равновесие (по Бержу) в модели дуополии Бертрана, с. 27-45

    В 1883 г. французский математик Жозеф Луи Франсуа Бертран (1822-1900) построил модель ценовой конкуренции на олигопольном рынке, на котором фирмы конкурируют между собой, меняя цену продукции. Заметим, что такая модель не «блистала новизной», ибо ровно на 45 лет раньше тоже французский экономист, философ и математик Антуан Огюст Курно (1801-1877) в «Исследовании математических принципов теории богатства» в разделе 7 «О конкуренции производителей» рассмотрел частный случай олигополии – дуополию (при которой участвуют только два производителя). В ней уже математическая модель основывалась на том, что оба производителя выбирают объем поставляемой продукции, цена же варьируется в результате равновесия между спросом и предложением. Рыночная цена устанавливается на том же уровне, на котором покупателями будет предъявлен спрос на весь «выкинутый на рынок» товар. Однако Бертран основывался на более естественном поведении продавца, именно на выборе им цены, а не количества «выброшенного» на рынок товара, как у Курно.
    Заметим, что покупатели обычно рассматривают продукцию одинакового назначения разных фирм как разные товары. Поэтому будем считать, что на рынок каждая фирма выходит со своим товаром, причем все эти товары взаимозаменяемы.
    Математическая модель дуополии Бертрана представлена бескоалиционной игрой двух лиц в нормальной форме. Для нее формализуется два вида равновесия: по Бержу (РБ) и по Нэшу (РН).
    Предполагается, что:
    $a)$ максимальная цена и себестоимость у обоих игроков совпадают (что естественно для рынка одного товара);
    $b)$ запрещена коалиция из двух игроков (в этом – бескоалиционный характер игры);
    $c)$ цена больше себестоимости, ибо в противном случае продавцам (игрокам) вряд ли стоит появляться на рынке.
    В предлагаемой читателю статье для почти всех значений параметров модели установлен конструктивный способ выбора конкретного равновесия (РБ или РН) в зависимости от установившейся на рынке максимальной цены продукта.

    Belskikh Y.A., Zhukovskii V.I., Samsonov S.P.
    Altruistic (Berge) equilibrium in the model of Bertrand duopoly, pp. 27-45

    In 1883 the French mathematician J. Bertrand (1822-1900) constructed the model of price competition on oligopoly market in which firms compete between themselves changing the price of goods.
    The mathematical model of Bertrand duopoly is represented by a non-cooperative game of two persons in normal form. Two equilibriums are formalized for it: Berge equilibrium (BE) and Nash equilibrium (NE).
    It is assumed that
    $a)$ maximal price and cost price of both players coincide (it's naturally for the market of one product);
    $b)$ the coalition of two players is prohibited (this is non-cooperative character of the game);
    $c)$ the price is higher than the cost price for otherwise the sellers (players) would hardly appear on the market.
    In the present article for almost all values of parameters of the model (except the measure-null) the constructive method of the choice of concrete equilibrium (BE or NE) depending on the maximal price of the product established in the market is suggested.

  9. Рассматривается процедура встраивания оптимизируемых фрагментов маршрутных решений в глобальные решения «большой» задачи, определяемые эвристическими алгоритмами. Постановка задачи маршрутизации учитывает некоторые особенности инженерной задачи о последовательной резке деталей, имеющих каждая один внешний и, возможно, несколько внутренних контуров. Последние должны подвергаться резке раньше внешнего, что приводит к большому числу условий предшествования. Данные условия активно используются в интересах снижения сложности вычислений. Тем не менее размерность задачи остается достаточно большой, что, в частности, не позволяет применять «глобальное» динамическое программирование и вынуждает к использованию эвристических алгоритмов (исследуемая задача относится к числу труднорешаемых в традиционном понимании). Поэтому представляет интерес разработка методов коррекции решений, получаемых на основе упомянутых алгоритмов. В настоящей работе такая коррекция реализуется посредством замены фрагментов (упомянутых решений), имеющих умеренную размерность, оптимальными «блоками», конструируемыми на основе динамического программирования с локальными условиями предшествования, которые согласуются с ограничениями исходной «большой» задачи. Предлагаемая замена не ухудшает, а, в типичных случаях, улучшает качество исходного «эвристического» решения, что подтверждается вычислительным экспериментом на многоядерной ПЭВМ.

    Предложенный алгоритм реализован в итерационном режиме: полученное после первой вставки на основе динамического программирования решение в виде пары «маршрут-трасса» принимается за исходное, для которого вновь конструируется вставка. При этом начало этой новой вставки выбирается случайно в пределах, определяемых возможностями формирования скользящего «окна» ощутимой, но все же достаточной для применения экономичной версии динамического программирования размерности. Далее процедура повторяется. Работа итерационного алгоритма иллюстрируется решением модельных задач, включая варианты с достаточно плотной «упаковкой» заготовок деталей на листе, что типично для машиностроительного производства.

    Petunin A.A., Chentsov A.G., Chentsov P.A.
    Local dynamic programming incuts in routing problems with restrictions, pp. 56-75

    The article is concerned with the procedure of insertion of optimizable fragments of route solutions into the global solutions of the «big» problem defined by heuristic algorithms. Setting of the route problem takes into account some singularities of the engineering problem about the sequential cutting of details each having one exterior and probably several interior contours. The latter ones must be subjected to cutting previously in comparison with the exterior contour, which leads to a great number of given preceding conditions. These conditions are actively used to decrease the computational complexity. Nevertheless, the problem dimensionality remains sufficiently large that does not permit to use “global’’ dynamic programming and forces heuristic algorithms to be used (the problem under investigation is a hard-solvable problem in the traditional sense). Therefore, it is interesting to develop the methods for correction of solutions based on the above-mentioned algorithms. In the present investigation, such correction is realized by the replacement of fragments (of the above-mentioned solutions) having a moderate dimensionality by optimal “blocks’’ constructed by dynamic programming with local preceding conditions which are compatible with the constraints of the initial “big’’ problem. The proposed replacement does not deteriorate, but, in typical cases, improves the quality of the initial heuristic solution. This is verified by the computing experiment on multi-core computer.

    The proposed algorithm is realized in the iterated regime: the solution (in the form of “route-trace’’) obtained after the first insertion on the basis of dynamic programming is taken as an initial solution for which the insertion is constructed again. In addition, the beginning of the new insertion is chosen randomly in the bounds defined by the possibilities of formation of a sliding “window’’ of the appreciable dimensionality which is in fact sufficient for the employment of the economical version of dynamic programming. Further, the procedure is repeated. The operation of the iterated algorithm is illustrated by solution of model problems including the versions with sufficiently dense “packing’’ of parts on a sheet, which is typical for the engineering production.

  10. Рассматриваются всюду плотные подмножества произведений топологических пространств. Доказано, что в произведении $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ где $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ сепарабельных пространств существуют счетные всюду плотные множества такие, что всякие счетные их подмножества имеют проекции на грани, обладающие дополнительными свойствами. Это позволяет доказать ряд фактов о всюду плотных множествах, в частности отсутствие сходящихся последовательностей, оценивать характер замкнутых подмножеств произведений.

    Gryzlov A.A.
    On projections of products of spaces, pp. 409-413

    We consider dense sets of products of topological spaces. We prove that in the product $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ where $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ there are dense sets such that their countable subsets have projections with additional properties. These properties entail that these dense sets contain no convergent sequences. By these properties we prove that the character of closed sets of the product is uncountable.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref