Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена изучению оценок скалярных произведений векторных полей и их применению при доказательстве разрешимости задач математической физики. В работе доказаны оценки скалярных произведений векторных полей в весовых функциональных пространствах суммируемых функций. В качестве примера применения таких оценок доказана разрешимость задачи об определении стационарного магнитного поля в трёхмерном евклидовом пространстве, содержащем ограниченную проводящую область. Также показана связь предложенной постановки задачи и соответствующей вариационной формулировки. Изучена возможность определения остальных неизвестных функций (электрического поля, объёмной плотности электрических зарядов) внутри проводящей подобласти.
скалярное произведение, векторное поле, уравнения Максвелла, разрешимость, функциональные пространства.The paper is devoted to studying of estimations of scalar products of vector fields and their application in the proof of solvability for mathematical physics problems. The estimations of scalar products of vector field were proved in weighted functional spaces of summable functions. As an example of the application of such estimations there was proved the solvability for the problem of determination of stationary magnetic field in whole three-dimensional Euclidian space containing bounded conducting domain. The association between the proposed problem statement and the corresponding variational statement was shown too. There was investigated the possibility of determination of another unknown functions (electric field, volume density of electrical charge) inside the conducting domain.
-
Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.
краевая задача, априорная оценка, регулярная разрешимость, интегральное уравнение Фредгольма второго рода, резольвента, метод последовательных приближений
A boundary value problem for a fourth order partial differential equation with the lowest term, pp. 3-10In this paper we study a boundary value problem for the fourth order partial differential equation with the lowest term in a rectangular domain. For the solution of the problem a priori estimate is obtained. From a priori estimate the uniqueness of the solution of the problem follows. For the proof of the solvability of this problem we use the method of separation of variables. The solvability of this problem is reduced to the Fredholm integral equation of the second kind with respect to unknown function. Integral equation is solved by the method of successive approximations. We find the sufficient conditions for the absolute and uniform convergence of series representing the solution of the problem and the series obtained by differentiation four times with respect x and two times with respect to t.
-
Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.
The paper is concerned with the problem of absolute continuity of the spectrum of the two-dimensional generalized periodic Schrodinger operator $H_g+V=-\nabla g\nabla+V$ where the continuous positive function $g$ and the scalar potential $V$ have a common period lattice $\Lambda$. The solutions of the equation $(H_g+V)\varphi=0$ determine, in particular, the electric field and the magnetic field of electromagnetic waves propagating in two-dimensional photonic crystals. The function $g$ and the scalar potential $V$ are expressed in terms of the electric permittivity $\varepsilon$ and the magnetic permeability $\mu$ ($V$ also depends on the frequency of the electromagnetic wave). The electric permittivity $\varepsilon$ may be a discontinuous function (and usually it is chosen to be piecewise constant) so the problem to relax the known smoothness conditions on the function $g$ that provide absolute continuity of the spectrum of the operator $H_g+V$ arises. In the present paper we assume that the Fourier coefficients of the functions $g^{\pm\frac12}$ for some $q\in[1, \frac43)$ satisfy the condition $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$, and the scalar potential $V$ has relative bound zero with respect to the operator $-\Delta$ in the sense of quadratic forms. Let $K$ be the fundamental domain of the lattice $\Lambda$, and assume that $K^*$ is the fundamental domain of the reciprocal lattice $\Lambda^*$. The operator $H_g+V$ is unitarily equivalent to the direct integral of operators $H_g(k)+V$, with quasimomenta $k\in 2\pi K^*$, acting on the space $L^2(K)$. The last operators can be also considered for complex vectors $k+ik'\in \mathbb{C}^2$. We use the Thomas method. The proof of absolute continuity of the spectrum of the operator $H_g+V$ amounts to showing that the operators $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, are invertible for some appropriately chosen complex vectors $k+ik'\in \mathbb{C}^2$ (depending on $g$, $V$, and the number $\lambda$) with sufficiently large imaginary parts $k'$.
-
В данной работе дается обзор результатов об устранимых особых множествах для классов $m$-субгармонических ($m-sh$) и сильно $m$-субгармонических ($sh_m$), а также $\alpha$-субгармонических функций, которые применяются для изучения особых множеств $sh_{m}$ функций. Для сильно $m$-субгармонических функций из класса $L_{loc}^{p}$, доказывается, что множество является устранимым особым множеством, если имеет нулевую $C_{q,s}$-емкость. Доказательство этого утверждения основано на том, что пространство основных функций, с носителем на множестве $D\backslash E$, плотно по $L_{q}^{s}$-норме в пространстве основных функций, определенных на множестве $D$. Аналогичные результаты в случае классических (суб)гармонических функций были изучены в работах Л. Карлесона, Е. Долженко, М. Бланшет, С. Гардинера, Ж. Риихентаус, В. Шапиро, А. Садуллаева и Ж. Ярметова, Б. Абдуллаева и С. Имомкулова.
субгармонические функции, $m$-субгармонические функции, сильно $m$-субгармонические функции, $\alpha$-субгармонические функции, борелевская мера, $C_{q, s}$-емкость, полярное множествоIn this paper, we survey the recent results on removable singular sets for the classes of $m$-subharmonic ($m-sh$) and strongly $m$-subharmonic ($sh_m$), as well as $\alpha$-subharmonic functions, which are applied to study the singular sets of $sh_{m}$ functions. In particular, for strongly $m$-subharmonic functions from the class $L_{loc}^{p}$, it is proved that a set is a removable singular set if it has zero $C_{q,s}$-capacity. The proof of this statement is based on the fact that the space of basic functions, supported on the set $D\backslash E$, is dense in the space of test functions defined in the set $D$ on the $L_{q}^{s}$-norm. Similar results in the case of classical (sub)harmonic functions were studied in the works by L. Carleson, E. Dolzhenko, M. Blanchet, S. Gardiner, J. Riihentaus, V. Shapiro, A. Sadullaev and Zh. Yarmetov, B. Abdullaev and S. Imomkulov.
-
В данной работе представлен новый подход к интерпретации логических формул для синтеза алгоритмов и программ. Предложенный метод сочетает в себе черты реализации Клини и интерпретации Гёделя «диалектика», но не опирается на них непосредственно. Рассматривается простой вариант позитивного языка логики предикатов без функций, с конъюнкцией, дизъюнкцией, импликацией и кванторами всеобщности и существования. Описана новая реализационная семантика формул и секвенций, в которой рассматривается не просто реализация формулы, а реализация с дополнительной поддержкой. Реализация примерно соответствует реализации Клини. Поддержка предоставляет дополнительные данные в пользу того, что реализация корректна. Поддержка должна подтвердить, что реализация работает корректно для формулы в любых корректных условиях применения. Представлен язык доказательств, для которого доказана теорема о корректности, показывающая, что любая выводимая секвенция имеет реализацию и поддержку, подтверждающую, что эта реализация работает правильно для этой формулы в любых корректных условиях при подходящем интерпретаторе используемых программ.
логические формулы, синтез алгоритмов, синтез программ, логика предикатов, исчисление секвенций, доказательства, интерпретации логических формул, искусственный интеллектThis paper presents a novel approach to interpreting logical formulas for synthesizing algorithms and programs. The proposed method combines features of Kleene realizability and Gödel's “dialectica” interpretation but does not rely on them directly. A simple version of positive predicate logic without functions is considered, including conjunction, disjunction, implication, and universal and existential quantifiers. A new realizability semantics for formulas and sequents is described, which considers not just a realization of a formula, but a realization with additional support. The realization roughly corresponds to Kleene realizability. The support provides additional data in favor of the correctness of the realization. The support must confirm that the realization works correctly for the formula under any valid conditions of application. A proof language is presented for which a correctness theorem is proved showing that any derivable sequent has a realization and support confirming that this realization works correctly for this formula under any valid conditions with a suitable interpreter for the programs used.
-
Изучается устойчивость линейных автономных скалярных разностных уравнений с комплексными коэффициентами. Для уравнения с произвольным количеством запаздываний приводится простое доказательство линейной связности его области устойчивости в пространстве коэффициентов. Этот результат позволяет утверждать, что областью устойчивости уравнения в пространстве коэффициентов является область $D$-разбиения этого пространства, содержащая начало координат. Далее рассматриваются некоторые уравнения с двумя запаздываниями и комплексными коэффициентами, для которых даются подробные аналитические и геометрические описания областей равномерной и экспоненциальной устойчивости.
We study the stability of linear autonomous scalar difference equations with complex coefficients. For an equation with an arbitrary number of delays, we propose a simple proof of the linear connectivity of the stability region in the space of coefficients. This result allows us to assert that the stability region of the equation in the space of coefficients is the region of the $D$-decomposition of this space containing the origin of coordinates. Further, we consider some equations with two delays and complex coefficients, for which we give detailed analytic and geometric descriptions of the regions of uniform and exponential stability.
-
Для билинейной управляемой системы с периодическими коэффициентами получены достаточные условия равномерной глобальной асимптотической стабилизации нулевого решения. Доказательство основано на применении теоремы Красовского об асимптотической устойчивости в целом нулевого решения для периодических систем. Стабилизирующее управление построено по принципу обратной связи. Оно имеет вид квадратичной формы от фазовой переменной и является периодическим по времени.
глобальная асимптотическая устойчивость, стабилизация, функция Ляпунова, билинейные системы, периодические системы.Sufficient conditions for uniform global asymptotic stabilization of the origin are obtained for bilinear control systems with periodic coefficients. The proof is based on the use of the Krasovsky theorem on global asymptotic stability of the origin for periodic systems. The stabilizing control function is feedback control constructed as the quadratic form of the phase variables and depends on time periodically.
-
Работа посвящена исследованию свойства замкнутости относительно операции сложения множества равномерных почти периодических функций. Показано, что доказательство этого свойства, проведенное в монографии Б.П. Демидовича «Лекции по математической теории устойчивости», содержит пробел. Приведено корректное доказательство.
We study the property of the closedness of the set of uniformly almost periodic functions with respect to the operation of addition. It is shown that the proof of this property found in the monograph by B.P. Demidovich “Lectures on the mathematical theory of stability” is not quite correct. A valid proof is given.
-
Рассматривается линейная управляемая система с линейной неполной обратной связью с дискретным временем $$x(t+1)=Ax(t)+Bu(t), \quad y(t)=C^*x(t), \quad u(t)=Uy(t),$$ $$t\in\mathbb{Z},\quad (x,u,y)\in\mathbb{K}^n\times\mathbb{K}^m\times\mathbb{K}^k.$$
Здесь $\mathbb K=\mathbb C$ или $\mathbb K=\mathbb R$. Для замкнутой системы $$x(t+1)=(A+BUC^*)x(t), \quad x\in\mathbb K^n, \qquad(1)$$
вводится понятие согласованности. Это понятие является обобщением понятия полной управляемости на системы с неполной обратной связью. Исследуется свойство согласованности системы $(1)$ в связи с задачей управления спектром собственных значений, которая заключается в приведении характеристического многочлена матрицы стационарной системы $(1)$ с помощью стационарного управления $U$ к произвольному наперед заданному полиному. Для системы $(1)$ специального вида, когда матрица $A$ имеет форму Хессенберга, а в матрицах $B$ и $C$ все строки соответственно до $p$-й и после $p$-й (не включая $p$) равны нулю, свойство согласованности является достаточным условием глобальной управляемости спектра собственных значений. В предыдущих работах было доказано, что обратное утверждение верно для $n<5$ и неверно для $n>5$. В настоящей работе открытый вопрос для $n=5$ разрешен. Доказано, что при $n=5$ для системы с коэффициентами специального вида свойство согласованности является необходимым условием глобальной управляемости спектра собственных значений. Доказательство производится перебором всевозможных допустимых значений размерностей $m,k,p$. Свойство согласованности эквивалентно свойству полной управляемости «большой системы» размерности $n^2$. Для доказательства строится большая система, строится матрица управляемости $K$ этой системы размерности $n^2\times n^2mk$. Доказывается, что матрица $K$ имеет ненулевой минор порядка $n^2=25$. Для вычисления определителей больших порядков используется система Maple 15.
линейная управляемая система, неполная обратная связь, согласованность, управление спектром, стабилизация, дискретная системаWe consider a discrete-time linear control system with an incomplete feedback $$x(t+1)=Ax(t)+Bu(t), \quad y(t)=C^*x(t), \quad u(t)=Uy(t),$$ $$t\in\mathbb{Z},\quad (x,u,y)\in\mathbb{K}^n\times\mathbb{K}^m\times\mathbb{K}^k,$$
where $\mathbb K=\mathbb C$ or $\mathbb K=\mathbb R$. We introduce the concept of consistency for the closed-loop system
$$x(t+1)=(A+BUC^*)x(t), \quad x\in\mathbb K^n. \qquad(1)$$
This concept is a generalization of the concept of complete controllability to systems with an incomplete feedback. We study the consistency of the system $(1)$ in connection with the problem of arbitrary placement of eigenvalue spectrum which is to bring a characteristic polynomial of a matrix of the system $(1)$ to any prescribed polynomial by means of the time-invariant control $U$. For the system $(1)$ of the special form where the matrix $A$ is Hessenberg and the rows of the matrix $B$ before the $p$-th and the rows of the matrix $C$ after the $p$-th (not including $p$) are equal to zero, the property of consistency is the sufficient condition for arbitrary placement of eigenvalue spectrum. In previous studies it has been proved that the converse is true for $n <5$ and false for $n> 5$. In this paper, an open question for $ n = 5 $ is resolved. For the system $(1)$ of the special form, it is proved that if $n = 5$ then the property of consistency is a necessary condition for the arbitrary placement of eigenvalue spectrum. The proof is carried out by direct searching of all possible valid values of dimensions $ m, k, p $. The property of consistency is equivalent to the property of complete controllability of a big system of dimension $n^2$. For the proof we construct the big system and the controllability matrix $K$ of this system of dimension $n^2\times n^2mk$. We show that the matrix $K$ has a nonzero minor of order $n^2 = 25$. We use Maple 15 to calculate the high-order determinants.
-
Об управлении отдельными асимптотическими инвариантами двумерных линейных управляемых систем с наблюдателем, с. 445-461Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).
линейная управляемая система с наблюдателем, равномерная полная управляемость, равномерная полная наблюдаемость, глобальная управляемость асимптотических инвариантов
Control over some asymptotic invariants of two-dimensional linear control systems with an observer, pp. 445-461We consider a linear time-varying control system with an observer with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p. \qquad(2)$$ We study a problem of control over asymptotic invariants for the system closed by linear dynamic output feedback with time-varying coefficients. The research method presented in the paper is based on the construction of a system of asymptotic estimation for the state of the system (1), (2), introduced by R. Kalman. For solving the problem, we use the extension of the notion of uniform complete controllability (in the sense of Kalman) proposed by E.L. Tonkov for systems with coefficients from wider functional classes. The notion of uniform complete observability (in the sense of Tonkov) is given for the system (1), (2). For $n=2$, it is proved that uniform complete controllability and uniform complete observability (in the sense of Tonkov) of the system (1), (2) with locally integrable and integrally bounded coefficients are sufficient for arbitrary assignability of the upper Bohl exponent and of the complete spectrum of the Lyapunov exponents for the system closed-loop by linear dynamic output feedback. For the proof, we use the previously established results on uniform global attainability of a two-dimensional system (1), closed by linear time-varying static state feedback, under the condition of uniform complete controllability (in the sense of Tonkov) of the open-loop system (1).
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.