Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
После статьи Молодцова [Molodtsov D. Soft set theory — First results // Computers and Mathematics with Applications. 1999. Vol. 37. No. 4-5. P. 19-31.] теория мягких множеств начала стремительно развиваться. Несколько авторов ввели различные операции, отношения, результаты и т.д., а также другие аспекты в теории мягких множеств и гибридных структур некорректно, несмотря на их широкое применение в математике и смежных областях. В своей работе [Molodtsov D.A. Equivalence and correct operations for soft sets // International Robotics and Automation Journal. 2018. Vol. 4. No. 1. P. 18-21.], Молодцов, отец теории мягких множеств, указал на несколько неверных результатов и понятий. Молодцов [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] также заявил, что понятие мягкого множества не везде было полностью понято и использовано. В связи с этим важно пересмотреть причуды этих представлений и дать формальное изложение понятия эквивалентности мягкого множества. Молодцов уже исследовал многие корректные операции над мягкими множествами. Мы используем некоторые понятия и результаты Молодцова [Молодцов Д.А. Структура мягких множеств // Нечеткие системы и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5-18.] для создания матричных представлений, а также связанных с ними операций над мягкими множествами, и для количественной оценки сходства между двумя мягкими множествами.
After the paper of Molodtsov [Molodtsov D. Soft set theory — First results, Computers and Mathematics with Applications, 1999, vol. 37, no. 4-5, pp. 19-31.] first appeared, soft set theory grew at a breakneck pace. Several authors have introduced various operations, relations, results, etc. as well as other aspects in soft set theory and hybrid structures incorrectly, despite their widespread use in mathematics and allied areas. In his paper [Molodtsov D.A. Equivalence and correct operations for soft sets, International Robotics and Automation Journal, 2018, vol. 4, no. 1, pp. 18-21.], Molodtsov, the father of soft set theory, pointed out several wrong results and notions. Molodtsov [Molodtsov D.A. Structure of soft sets, Nechetkie Sistemy i Myagkie Vychisleniya, 2017, vol. 12, no. 1, pp. 5-18.] also stated that the concept of soft set had not been fully understood and used everywhere. As a result, it is important to revisit the quirks of those conceptions and provide a formal account of the notion of soft set equivalency. Molodtsov already explored many correct operations on soft sets. We use some notions and results of Molodtsov [Molodtsov D.A. Structure of soft sets, Nechetkie Sistemy i Myagkie Vychisleniya, 2017, vol. 12, no. 1, pp. 5-18.] to create matrix representations as well as related operations of soft sets, and to quantify the similarity between two soft sets.
-
Изучается задача, относящаяся к оценке хаусдорфова отклонения выпуклых многоугольников в $\mathbb{R}^2$ от их геометрической разности с кругами достаточно малого радиуса. Задачи с такой тематикой, в которых рассматриваются не только выпуклые многоугольники, но и выпуклые компакты в евклидовом пространстве $\mathbb{R}^n$, возникают в различных областях математики и, в частности, в теории дифференциальных игр, теории управления, выпуклом анализе. Оценки хаусдорфовых отклонений выпуклых компактов в $\mathbb{R}^n$ от их геометрической разности с замкнутыми шарами в $\mathbb{R}^n$ присутствуют в работах Л.С. Понтрягина, его сотрудников и коллег. Эти оценки весьма существенны при выводе оценки рассогласования альтернированного интеграла Л. С. Понтрягина в линейных дифференциальных играх преследования и альтернированных сумм. Аналогичные оценки оказываются полезными при выводе оценки рассогласования множеств достижимости нелинейных управляемых систем в $\mathbb{R}^n$ и аппроксимирующих их множеств. В работе рассмотрен конкретный выпуклый семиугольник в $\mathbb{R}^2$. Для изучения геометрии этого семиугольника вводится понятие клина в $\mathbb{R}^2$. На базе этого понятия получена верхняя оценка величины хаусдорфова отклонения семиугольника от его геометрической разности с кругом в $\mathbb{R}^2$ достаточно малого радиуса.
выпуклый многоугольник в $\mathbb{R}^2$, хаусдорфово отклонение, клин, конус, круг, геометрическая разность множеств
On estimation of Hausdorff deviation of convex polygons in $\mathbb{R}^2$ from their differences with disks, pp. 585-603We study a problem concerning the estimation of the Hausdorff deviation of convex polygons in $\mathbb R^2$ from their geometric difference with circles of sufficiently small radius. Problems with such a subject, in which not only convex polygons but also convex compacts in the Euclidean space $\mathbb R^n$ are considered, arise in various fields of mathematics and, in particular, in the theory of differential games, control theory, convex analysis. Estimates of Hausdorff deviations of convex compact sets in $\mathbb R^n$ in their geometric difference with closed balls in $\mathbb R^n$ are presented in the works of L.S. Pontryagin, his staff and colleagues. These estimates are very important in deriving an estimate for the mismatch of the alternating Pontryagin’s integral in linear differential games of pursuit and alternating sums. Similar estimates turn out to be useful in deriving an estimate for the mismatch of the attainability sets of nonlinear control systems in $\mathbb R^n$ and the sets approximating them. The paper considers a specific convex heptagon in $\mathbb R^2$. To study the geometry of this heptagon, we introduce the concept of a wedge in $\mathbb R^2$. On the basis of this notion, we obtain an upper bound for the Hausdorff deviation of a heptagon from its geometric difference with the disc in $\mathbb R^2$ of sufficiently small radius.
-
В современной физической литературе неоднократно возникала потребность в формулах, позволяющих в квантовой одномерной задаче рассеяния свести вычисление вероятности отражения (прохождения) для потенциала, состоящего из нескольких «барьеров», к вероятностям отражения и прохождения через эти «барьеры». В настоящей работе исследуется задача рассеяния для разностного оператора Шрёдингера с потенциалом, являющимся суммой N функций (описывающих «барьеры» или «слои») с попарно непересекающимися носителями. С помощью уравнения Липпмана-Швингера доказана теорема, позволяющая вычисление амплитуд отражения и прохождения для данного потенциала свести к вычислению амплитуд отражения и прохождения для слагаемых. Для N=2 получены простые явные формулы, осуществляющие такое сведение. Рассмотрены частные случаи четного первого барьера и двух одинаковых четных (после соответствующих сдвигов) барьеров. Разумеется, аналогичные результаты справедливы и для вероятностей отражения и прохождения. Получено простое уравнение для нахождения резонансов двухбарьерной структуры в терминах амплитуд для каждого из двух барьеров.
В статье также приведена иная схема доказательства полученных результатов, основанная на разложении в ряд T-оператора, позволяющая обосновать физические представления о рассеянии на многослойной структуре как о многократном рассеянии на отдельно взятых слоях. При доказательстве утверждений используется известный прием сведения уравнения Липпмана-Швингера к «модифицированному» уравнению в гильбертовом пространстве, что позволяет, в свою очередь, воспользоваться теорией Фредгольма. Конечно, все полученные результаты остаются справедливыми и для «непрерывного» оператора Шрёдингера, а выбор дискретного подхода обусловлен его растущей популярностью в квантовой теории твердого тела.
In modern physics literature, the need for formulas that permit, in a quantum one-dimensional problem, to reduce a calculation of the reflection (transmission) probability for the potential consisting of some “barriers” to the reflection and transmission probabilities over these “barriers” repeatedly occurred. In this paper, we study the scattering problem for the difference Schrodinger operator with the potential which is the sum of N functions (describing the “barriers” or “layers”) with pairwise disjoint supports. With the help of the Lippmann-Schwinger equation, we proved the theorem which reduces the calculation of the reflection and transmission amplitudes for this potential, to the calculation of the ones for these barriers. For N=2 simple explicit formulas which realized this reduction were obtained. The particular cases for the even first barrier and two identical even (after appropriate shifts) barriers were studied. Of course, the similar results hold for the reflection (transmission) probabilities. We obtained the simple equation for the double-barrier structure resonances in terms of the amplitudes of each of the two barriers.
In the paper, we also present the alternative scheme of the proof of the obtained results which are based on the series expansion of the T-operator. This approach substantiates the physical understanding of the scattering by a multilayer structure as multiple scattering on separate layers. To proof the theorems, the known method of reduction of the Lippmann-Schwinger equation to the “modified” equation in a Hilbert space is used. Of course, all the results remain valid for the “continuous” Schrodinger operator, and the choice of the discrete approach is due to its growing popularity in the quantum theory of solids.
-
Применение теоретико-вероятностного подхода при моделировании систем химической кинетики, с. 492-500В работе рассматривается модель химической кинетики, для которой вывод уравнений не опирается на закон действующих масс, а строится на основе таких принципов, как геометрическая вероятность, а также совместная вероятность для двух событий. Для этой модели строится обобщение на случай реакции-диффузии в гетерогенной среде, а также учитывается конвекционный и диффузионный перенос тепловой энергии. Построение данного обобщения проводится по альтернативной методике на основе систем обыкновенных дифференциальных уравнений и без перехода к частным производным. По своему описанию этот подход близок к методу конечных объемов, но в отличие от него для описания диффузии применяются статистические упрощения и принцип геометрической вероятности. Подобный альтернативный вариант позволяет значительно упростить численную реализацию итоговой модели, а также упростить ее качественный анализ методами теории динамических систем. Помимо этого, также значительно повышается эффективность параллельной реализации численного метода для итоговой модели. Дополнительно к этому мы также рассмотрим приложение модели для описания эталонного примера кинетики с квазипериодическим режимом, а также рассмотрим алгоритм перевода стандартных моделей с размерными кинетическими константами к ее формализму.
The paper considers a model of chemical kinetics for which the derivation of equations does not rely on the law of mass action, but is rather based on such principles as geometric probability and joint probability. For this model a generalization is constructed for the case of reaction-diffusion systems in heterogeneous medium, with respect to the convective and diffusive transfer of heat. The construction of this generalization is carried out by an alternative methodology, which is based fully on systems of ordinary differential equations, without a transition to partial derivatives. The description of this new method is a bit similar to the finite volume method, except that it uses statistical simplifying positions and geometric probability to describe diffusion processes. Such approach allows us to greatly simplify the numerical implementation of the resulting model, as well as to simplify its quantitative analysis by dynamical systems theory methods. Moreover, the efficiency of parallel implementation of the numerical method is increased for the resulting model. In addition, the author considers an application of this model for the description of some example reaction with quasi-periodic regime, as well as an algorithm for the transition from standard models with dimensional kinetic constants to its formalism.
-
В работе рассматривается новая методика моделирования реакционно-диффузионных систем на основе систем обыкновенных дифференциальных уравнений. В отличие от специализированных численных методов, таких как метод прямых, новая методика позиционируется как чистая альтернатива на модельном уровне для уравнений в частных производных. По своему описанию новый метод во многом подобен методу конечных объемов, но в отличие от него для описания диффузии применяет статистические упрощения и принципы геометрической вероятности. Главными задачами данного подхода являются упрощение качественного анализа реакционно-диффузионных систем, а также повышение эффективности численной реализации модели. Первая задача успешно решается, так как для качественного анализа динамики модели на основе систем обыкновенных дифференциальных уравнений становится возможным использовать аппарат классической теории динамических систем. Вторая задача решается лишь отчасти, так как выигрыш при сохранении приемлемой точности для численной реализации будет существенным лишь для определенных, достаточно простых, начальных распределений молекул, а также для определенных коэффициентов диффузии. При этом для формирования критериев применимости на практике мы отдельно оцениваем погрешность моделирования с использованием данной новой методики.
We consider a new technique for modelling the reaction-diffusion systems based on systems of ordinary differential equations. In contrary to the specialized numerical methods such as straight line method, this new technique is positioned at model level as a full alternative for partial differential equations. The description of this new method is quite similar to the description of finite volume method, except that it uses statistical simplifications and principles of geometric probability to describe diffusion processes. The main goal of this approach is to simplify the qualitative analysis of reaction-diffusion systems and to increase the efficiency of the numerical implementation. The first task is successfully resolved because of the fact that for the qualitative analysis of model dynamics based on ordinary differential equations it is possible to use the apparatus of the classical theory of dynamical systems. The second task is solved only partially, because the gain in efficiency while maintaining acceptable accuracy for numerical implementation will be considerable only for certain simple initial distribution of molecules, as well as for certain diffusion coefficients. To determine the criteria for practical application of this technique we also estimate the model error in general.
-
Влияние эффектов Барнетта-Лондона и Эйнштейна-де Гааза на движение неголономной сферы Рауса, с. 583-598Рассматривается качение неуравновешенного динамически симметричного шара по плоскости без проскальзывания в присутствии внешнего магнитного поля. Предполагается, что шар может полностью или частично состоять из диэлектрического, ферромагнитного или сверхпроводящего материалов. Согласно существующей феноменологической теории в этом случае при изучении динами шара требуется учитывать момент силы Лоренца, момент Барнетта-Лондона и момент Эйнштейна-де Гааза. В рамках данной математической модели нами получены условия существования интегралов движения, которые позволяют свести интегрирование уравнений движения к квадратуре аналогичной квадратуре Лагранжа для тяжелого твердого тела.
Influence of Bartnett-London and Einstein-de Haas effects on the motion of the nonholonomic sphere of Routh, pp. 583-598We consider the rolling of an unbalanced dynamically symmetric ball along a plane without slipping in the presence of an external magnetic field. We assume that the ball may be wholly or partially composed of dielectric, ferromagnetic, or superconducting materials. According to the existing phenomenological theory, in this case, when studying the dynamics of a ball, it is required to take into account the Lorentz force moment, Barnett-London moment, and Einstein-de Haas moment. Within the framework of this mathematical model, we obtain the conditions for the existence of integrals of motion, which allow us to reduce the integration of equations of motion to a quadrature similar to the Lagrange quadrature for a heavy rigid body.
-
На основе анализа теории размерностей вводится набор безразмерных параметров, характеризующих класс задач, описывающих фильтрационные течения жидкостей и газов к трещинам гидравлического разрыва пласта (ГРП).
фильтрация в пористых средах, гидроразрыв пласта, зона загрязнения, анализ размерностей, теория подобия, численное моделированиеThis work presents the basic application of dimensional analysis to the problem of fluid flow in porous media with finite conductivity fracture complicated by presence of damaged zone around the fracture. Two kinds of fracture damage parameters are studied: a damaged zone width around the fracture and a damaged zone permeability reduction caused by the fracturing fluid loss in the formation. This paper emphasizes that damage effects on well productivity are quite different for different values of dimensionless fracture conductivity, fracture penetration ratio and damage factor. Special type curves for steady-state productivity index can be used to identify different cases when damaged zone influence on well productivity index becomes quite significant.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.