Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Получены необходимые и достаточные условия разрешимости периодической краевой задачи для всех линейных функционально-дифференциальных уравнений второго порядка с заданной нормой функционального оператора.
линейные уравнения с последействием, периодическая краевая задача, периодические решения, функционально-дифференциальные уравненияNecessary and sufficient conditions for the unique solvability of the periodic boundary value problem for all linear second order functional differential equations with the given norm of the functional operators.
-
Рассматривается задача о назначении спектра показателей Ляпунова линейной управляемой системы с дискретным временем $$x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \qquad (1)$$ посредством линейной по фазовым переменным обратной связи $u(m)=U(m)x(m)$ в малой окрестности спектра показателей свободной системы $$x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (2)$$ Дополнительно требуется, чтобы норма матрицы обратной связи $U(\cdot)$ удовлетворяла липшицевой оценке по отношению к требуемому смещению показателей. Это свойство называется пропорциональной локальной управляемостью полного спектра показателей Ляпунова замкнутой системы $$x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (3)$$ Построен пример, показывающий, что найденные ранее достаточные условия пропорциональной локальной управляемости полного спектра показателей Ляпунова системы (3) (равномерная полная управляемость системы (1) и устойчивость показателей Ляпунова свободной системы (2)) не являются необходимыми.
On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system, pp. 301-311We consider a problem of assigning the Lyapunov spectrum for a linear control discrete-time system $$x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \qquad (1)$$ in a small neighborhood of the Lyapunov spectrum of the free system $$x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\qquad (2) $$ by means of linear feedback $u(m)=U(m)x(m)$. We assume that the norm of the feedback matrix $U(\cdot)$ satisfies the Lipschitz estimate with respect to the required shift of the Lyapunov spectrum. This property is called proportional local assignability of the Lyapunov spectrum of the closed-loop system $$x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (3)$$ We previously proved that uniform complete controllability of system (1) and stability of the Lyapunov spectrum of free system (2) are sufficient conditions for proportional local assignability of the Lyapunov spectrum of closed-loop system (3). In this paper we give an example demonstrating that these conditions are not necessary.
-
В данной работе дается обзор результатов об устранимых особых множествах для классов $m$-субгармонических ($m-sh$) и сильно $m$-субгармонических ($sh_m$), а также $\alpha$-субгармонических функций, которые применяются для изучения особых множеств $sh_{m}$ функций. Для сильно $m$-субгармонических функций из класса $L_{loc}^{p}$, доказывается, что множество является устранимым особым множеством, если имеет нулевую $C_{q,s}$-емкость. Доказательство этого утверждения основано на том, что пространство основных функций, с носителем на множестве $D\backslash E$, плотно по $L_{q}^{s}$-норме в пространстве основных функций, определенных на множестве $D$. Аналогичные результаты в случае классических (суб)гармонических функций были изучены в работах Л. Карлесона, Е. Долженко, М. Бланшет, С. Гардинера, Ж. Риихентаус, В. Шапиро, А. Садуллаева и Ж. Ярметова, Б. Абдуллаева и С. Имомкулова.
субгармонические функции, $m$-субгармонические функции, сильно $m$-субгармонические функции, $\alpha$-субгармонические функции, борелевская мера, $C_{q, s}$-емкость, полярное множествоIn this paper, we survey the recent results on removable singular sets for the classes of $m$-subharmonic ($m-sh$) and strongly $m$-subharmonic ($sh_m$), as well as $\alpha$-subharmonic functions, which are applied to study the singular sets of $sh_{m}$ functions. In particular, for strongly $m$-subharmonic functions from the class $L_{loc}^{p}$, it is proved that a set is a removable singular set if it has zero $C_{q,s}$-capacity. The proof of this statement is based on the fact that the space of basic functions, supported on the set $D\backslash E$, is dense in the space of test functions defined in the set $D$ on the $L_{q}^{s}$-norm. Similar results in the case of classical (sub)harmonic functions were studied in the works by L. Carleson, E. Dolzhenko, M. Blanchet, S. Gardiner, J. Riihentaus, V. Shapiro, A. Sadullaev and Zh. Yarmetov, B. Abdullaev and S. Imomkulov.
-
В работе вводится понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Показано, что всякая функция, заданная и непрерывная на замыкании $X$ открытого ограниченного множества $X_0\subseteq\mathbb R^n$, является правильной (принадлежит пространству $\langle{\rm G(}X),\|\cdot\|\rangle$). Доказана полнота пространства ${\rm G}(X)$ по $\sup$-норме $\|\cdot\|$. Оно является замыканием пространства ступенчатых функций. Во второй части работы определено и исследовано пространство ${\rm G}^J(X)$, отличающееся от пространства ${\rm G}(X)$ тем, что в его определении вместо разбиений используются $J$-разбиения, элементы которых — измеримые по Жордану открытые множества. Перечисленные выше свойства пространства ${\rm G}(X)$ переносятся на пространство ${\rm G}^J(X)$. В заключительной части работы определено понятие $J$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по Жордану замыкание открытого ограниченного множества $X_0\subseteq\mathbb R^n$, а функция $f\colon X\to\mathbb R$ интегрируема по Риману, то она $J$-интегрируема. При этом значения интегралов совпадают. Все функции $f\in{\rm G}^J(X)$ являются $J$-интегрируемыми.
On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral, pp. 387-401The paper introduces the concept of a regulated function of several variables $f\colon X\to\mathbb R$, where $X\subseteq \mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\subseteq\mathbb R^n$, is regulated (belongs to the space $\langle{\rm G(}X),\|\cdot\ |\rangle$). The completeness of the space ${\rm G}(X)$ in the $\sup$-norm $\|\cdot\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\rm G}^J(X)$ is defined and studied, which differs from the space ${\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\rm G}(X)$ listed above carry over to the space ${\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\subseteq\mathbb R^n$, and the function $f\colon X\to\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\in{\rm G}^J(X)$ are $J$-integrable.
-
В пространстве прерывистых функций исследовано параметрическое семейство подпространств специального вида и подпространство, представляющее их пересечение. Оно содержит в себе пространство функций ограниченной вариации. Исследована решетка подпространств, зависящая от параметра. Исследованы вопросы существования интеграла Римана–Стилтьеса на элементах подпространств. Доказана полнота подпространств (в каждом подпространстве используется собственная норма). Исследованы соотношения между нормами.
In the space of regulated functions the parametrical family of subspaces of special kind is investigated. Subspace crossing representing them is investigated too. It includes the space of functions of bounded variation. The lattice of subspaces depending from parameter is investigated. Questions of existence of integral Riemann–Stieltjes for elements of subspaces are investigated. Completeness of subspaces is proved (for everyone subspace own norm is used). Relations between norms are investigated.
-
В конечномерном нормированном пространстве рассматривается дискретная игровая задача фиксированной продолжительности. Терминальное множество определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. В данной работе построены оптимальные управления игроков. Проведено компьютерное моделирование игрового процесса. Рассмотрена модификация исходной задачи, в которой у первого игрока в неизвестный момент времени происходит изменение в динамике.
In a normed space of finite dimension a discrete game problem with fixed duration is considered. The terminal set is determined by the condition that the norm of the phase vector belongs to a segment with positive ends. In this paper, a set defined by this condition is called a ring. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is the opposite. In this paper, optimal controls of the players are constructed. Computer simulation of the game process is performed. A modification of the original problem, in which at an unknown time there is a change in the dynamics of the first player, is considered.
-
О банаховых пространствах правильных функций многих переменных. Аналог интеграла Римана–Стилтьеса, с. 182-203В предыдущей работе авторов введено понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Пространство ${\mathrm G}(X)$ таких функций банахово по $\sup$-норме и является замыканием пространства ступенчатых функций. В настоящей работе определено и исследовано пространство ${\mathrm G}^F(X)$, отличающееся от ${\mathrm G}(X)$ тем, что здесь в определении правильных функций многих переменных вместо специальных разбиений фигурируют $F$-разбиения: их элементами являются измеримые по обобщенной мере Жордана (по мере $m_{_{\!F}}$) непустые открытые множества. (Через $F$ обозначена функция, порождающая меру $m_{_{\!F}}$.) Во второй части работы определено понятие $F$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по мере $m_{_{\!F}}$ замыкание непустого открытого ограниченного множества $X_0\subseteq{\mathbb R}^n$, а функция $f\colon X\to {\mathbb R}$ интегрируема в смысле Римана–Стилтьеса относительно меры $m_{_{\!F}}$, то она $F$-интегрируема. При этом значения кратных интегралов совпадают. Все функции из пространства ${\mathrm G}^F(X)$ являются $F$-интегрируемыми. Доказаны основные свойства $F$-интеграла Римана–Стилтьеса.
On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral, pp. 182-203In the previous work of the authors, the concept of a regulated function of several variables $f\colon X\to\mathbb R$ was introduced, where $X\subseteq \mathbb R^n.$ The definition is based on the concept of a special partition of the set $X$ and the concept oscillation of the function $f$ on the elements of the partition. The space ${\rm G}(X)$ of such functions is Banach in the $\sup$-norm and is the closure of the space of step functions. In this paper, the space ${\rm G}^F(X)$ is defined and studied, which differs from ${\rm G}(X)$ in that here, in defining regulated functions of several variables, instead of special partitions, $F$-partitions are used: their elements are non-empty open sets measurable by the generalized Jordan measure (by the measure $m_{_{\!F}}$). (Symbol $F$ denotes the function generating the measure $m_{_{\!F}}.$) In the second part of the work, the concept of $F$-integrability of functions of several variables is defined. It is proved that if $X$ is the closure of a non-empty open bounded set $X_0\subseteq {\mathbb R}^n,$ measurable with respect to measure $m_{_{\!F}},$ and the function $f\colon X\to {\mathbb R}$ is integrable in the Riemann–Stieltjes sense with respect to the measure $m_{_{\!F}}$, then it is $F$-integrable. In this case, the values of the multiple integrals coincide. All functions from the space ${\rm G}^F(X)$ are $F$-integrable. The main properties of the Riemann–Stieltjes $F$-integral are proved.
-
Для динамической системы, подверженной воздействиям управления и помехи и содержащей последействие в управляющих силах, рассматривается задача об управлении с оптимальным гарантированным результатом для показателя качества, представляющего собой евклидову норму совокупности отклонений движения системы в заданные моменты времени от заданных целей. На основе функциональной трактовки, опирающейся на своеобразный прогноз движений, исходная задача сводится к вспомогательной дифференциальной игре для системы без запаздывания и с терминальной платой. Функция цены этой игры вычисляется на базе конструкции выпуклых сверху оболочек вспомогательных функций из метода стохастического программного синтеза, оптимальные стратегии строятся методом экстремального сдвига на сопутствующие точки. Рассматриваются иллюстрирующие примеры, приводятся результаты численных экспериментов.
For a dynamical system under control and disturbances, and with delay in control, the problem of control with the optimal guaranteed result is considered for a quality index which is the Euclidean norm of the set of deviations of a system motion at the given instants from the given targets. On the basis of a functional treatment basing on a proper prediction of the motion the problem is reduced to an auxiliary differential game for a system without delay and with a terminal quality index. The value of this game is calculated from the construction of upper convex hulls of auxiliary functions from the method of stochastic program synthesis, optimal strategies are formed by the method of an extremal shift to the corresponding points. Illustrating examples and results of numerical experiments are presented.
-
Для задачи оптимального управления линейным параболическим уравнением с распределенным, начальным и граничным управлениями и с операторным полуфазовым ограничением типа равенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собой регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации. Приводятся результаты модельных расчетов при решении конкретной задачи оптимального управления, иллюстрирующих работу алгоритма, основанного на регляризованном итерационном принципе максимума Понтрягина. В качестве конкретной оптимизационной задачи рассмотрена задача поиска минимальной по норме тройки управлений при операторном ограничении-равенстве в финальный момент времени, или, другими словами, обратная задача финального наблюдения по поиску ее нормального решения.
оптимальное управление, неустойчивость, итеративная двойственная регуляризация, регуляризованный итерационный принцип Лагранжа, регуляризованный итерационный принцип максимума ПонтрягинаThe stable sequential Pontryagin maximum principle or, in other words, the regularized Pontryagin maximum principle in iterative form is formulated for the optimal control problem of a linear parabolic equation with distributed, initial and boundary controls and operator semiphase equality constraint. The main difference between it and the classical Pontryagin maximum principle is that, firstly, it is formulated in terms of minimizing sequences, secondly, the iterative process occurs in dual space, and thirdly, it is resistant to error of raw data and gives a minimizing approximate solution in the sense of J. Warga. So it is a regularizing algorithm. The proof of the regularized Pontryagin maximum principle in iterative form is based on the dual regularization methods and iterative dual regularization. The results of model calculations of the concrete optimal control problem illustrating the work of the algorithm based on the regularized iterative Pontryagin maximum principle are presented. The problem of finding a control triple with minimal norm under a given equality constraint at the final instant of time or, in other words, the inverse final observation problem of finding a normal solution is used as a concrete model optimal control problem.
-
Работа посвящена исследованию второй начально-краевой задачи для дифференциального уравнения третьего порядка псевдопараболического типа с переменными коэффициентами в многомерной области с произвольной границей. Рассматриваемое многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром и для полученного уравнения строится локально-одномерная разностная схема А.А. Самарского. С помощью принципа максимума получена априорная оценка решения локально-одномерной разностной схемы в равномерной метрике в норме $C$. Доказаны устойчивость и сходимость локально-одномерной разностной схемы.
псевдопараболическое уравнение, уравнение влагопереноса, локально-одномерная схема, устойчивость, сходимость разностной схемы, аддитивность схемыThe work is devoted to the study of the second initial-boundary value problem for a general-form third-order differential equation of pseudoparabolic type with variable coefficients in a multidimensional domain with an arbitrary boundary. In this paper, a multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter, and a locally one-dimensional difference scheme by A.A. Samarskii is used. Using the maximum principle, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme in the uniform metric in the $C$ norm. The stability and convergence of the locally one-dimensional difference scheme are proved.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.