Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Пусть $X_0\subseteq\mathbb R^n$ — непустое открытое множество и $X_0\subseteq X\subseteq\overline X_0$. Допускается, что множество $X_0$ не ограничено и/или имеет счетное число компонент связности. В работе исследуются некоторые пространства функций $f\colon X\to\mathbb R$, наделенные специальной нормой $\|\cdot\|$. В определении нормы фигурирует $n$-мерный вектор $(\Delta x)^{-1}\Delta f$, являющийся аналогом отношения $\frac{\Delta f}{\Delta x}$, порождающего понятие производной функции одной переменной. Вектор $(\Delta x)^{-1}\Delta f$ можно ассоциировать с вектором $\mathrm{grad}\,f(\cdot)$. Обратимая матрица $\Delta x$ порядка $n$ состоит из специальных приращений аргумента ${x\in \mathbb R^n}$, а вектор $\Delta f$ состоит из специальных приращений функции $f$. Доказан ряд свойств вектора $(\Delta x)^{-1}\Delta f$, получена точная формула для его евклидовой нормы. Доказана полнота по специальной норме $\|\cdot\|$ пространства $\mathcal G(X)$, состоящего из непрерывных ограниченных функций $f\colon X\to\mathbb R$ и имеющих дополнительные ограничения типа ограничений Липшица–Гёльдера. Подобные функции играют важную роль при решении задач математической физики. Исследован ряд актуальных подпространств пространства $\mathcal G(X)$, доказано, что два из них банаховы, одно из них при $n=1$ и при определенных условиях является замыканием пространства кусочно-линейных функций $f\colon X\to\mathbb R$.
Let $X_0\subseteq\mathbb R^n$ be a nonempty open set and $X_0\subseteq X\subseteq\overline X_0$. We admit that the set $X_0$ is unbounded and/or has a countable number of connected components. In this paper, we study some spaces of functions $f\colon X\to\mathbb R$ endowed with a special norm $\|\cdot\|$. The definition of the norm involves an $n$-dimensional vector $(\Delta x)^{-1}\Delta f$, which is an analogue of the relation $\frac{\Delta f}{\Delta x}$ generating the concept of the derivative of a function of one variable. The vector $(\Delta x)^{-1}\Delta f$ can be associated with the vector $\mathrm{grad}\,f(\cdot)$. The invertible matrix $\Delta x$ of order $n$ consists of special increments of the argument $x\in \mathbb R^n$, and the vector $\Delta f$ consists of special increments of the function $f$. A number of properties of the vector $(\Delta x)^{-1}\Delta f$ is proved, and an exact formula for its Euclidean norm is obtained. We prove the completeness with respect to a special norm $\|\cdot\|$ of the space $\mathcal G(X)$ consisting of continuous bounded functions $f\colon X\to\mathbb R$ and having additional restrictions of the Lipschitz–Hölder type. Such functions play an important role in solving mathematical physics problems. A number of important subspaces of the space $\mathcal G(X)$ is investigated. It is proved that two of them are Banach, and one of them, for $n=1$ and under certain conditions, is the closure of the space of piecewise linear functions $f\colon X\to\mathbb R$.
-
В статье рассмотрены основные принципы постановок задач в механике твердого тела при наличии связей (с сухим трением и без). Основное внимание уделено предыстории начальных условий задачи, которая должна быть корректно определена таким образом, чтобы не требовалось введения дополнительных гипотез и допущений, выводящих исследование за рамки динамики твердого тела без ударов. Тогда динамика движения (и/или равновесия) твердых тел может быть описана однозначно и без каких-либо парадоксальных ситуаций (парадоксов Пэнлеве). Эта методика иллюстрируется на трех известных задачах механики: опирание твердого тела на одну точку при наличии сухого трения, движение стержня с ползунами в направляющих с сухим трением, опирание твердого тела на две точки с сухим трением («скамейка»).
On the settings of problems in dynamics of a rigid body with constraints and Painlev’e paradoxes, pp. 75-88We consider basic concepts for setting the problems of motion of a rigid body with constraints (with and without dry friction). The main accent is placed upon the prehistory of initial condition of a problems, which should be formulated in a correct manner which would not require introducing additional hypothesis and assumptions which make one to leave the frames of the rigid body dynamics without impacts. With such correct formulation, the dynamics of motion (or equilibrium) of rigid bodies can be described without occurence of some paradoxic situations (Painlev'e paradoxes). The presented methodology is illustrated by three well-known problems in mechanics: 1) rigid body with a single contact point with a surface in the presence of dry friction, 2) sliding bar in the sliding ways with dry friction, 3) rigid body with two point contact in the presence of dry friction («bench»).
-
В статье рассмотрены методы для обнаружения особых точек на аффинной гиперповерхности или подтверждения гладкости этой гиперповерхности. Наш подход основан на построении касательных прямых к данной гиперповерхности. Существование хотя бы одной особой точки накладывает ограничение на алгебраическое уравнение, определяющее совокупность касательных прямых, проходящих через выделенную точку в пространстве. Это уравнение основано на формуле для дискриминанта многочлена от одной переменной. Для произвольно фиксированной степени гиперповерхности нами предложен детерминированный алгоритм полиномиального времени для вычисления базиса в подпространстве соответствующих многочленов. Если линейная комбинация таких многочленов не обращается в нуль на гиперповерхности, то гиперповерхность гладкая. Мы формулируем достаточное условие гладкости, проверяемое за полиномиальное время. Для некоторых гладких аффинных гиперповерхностей это условие выполнено. Этот набор включает графики кубических многочленов от нескольких переменных, а также другие примеры кубических гиперповерхностей. С другой стороны, это условие не выполняется для некоторых кубических гиперповерхностей высокой размерности. Это не мешает применению метода в низких размерностях. Также поиск особых точек важен для решения некоторых задач машинного зрения, в том числе для обнаружения угла у препятствия по последовательности кадров с одной камеры на движущемся транспортном средстве.
On tangent lines to affine hypersurfaces, pp. 248-256The article focuses on methods to look for singular points of an affine hypersurface or to confirm the smoothness of the hypersurface. Our approach is based on the description of tangent lines to the hypersurface. The existence of at least one singular point imposes a restriction on the algebraic equation that determines the set of tangent lines passing through the selected point of the space. This equation is based on the formula for the discriminant of a univariate polynomial. For an arbitrary fixed hypersurface degree, we have proposed a deterministic polynomial time algorithm for computing a basis for the subspace of the corresponding polynomials. If a linear combination of these polynomials does not vanish on the hypersurface, then the hypersurface is smooth. We state a sufficient smoothness condition, which is verifiable in polynomial time. There are smooth affine hypersurfaces for which the condition is satisfied. The set includes the graphs of cubic polynomials in many variables as well as other examples of cubic hypersurfaces. On the other hand, the condition is violated for some high-dimensional cubic hypersurfaces. This does not prevent the application of the method in low dimensions. Searching for singular points is also important for solving some problems of machine vision, including detection of a corner by means of the frame sequence with one camera on a moving vehicle.
-
Интегрирование уравнений свободного движения тяжелой точки в среде с вертикальным градиентом плотности, с. 120-132Резольвентный метод, базирующийся на преобразованиях Лежандра, применен для интегрирования уравнений баллистики в среде со степенным по скорости сопротивлением, коэффициент которого падает линейно с высотой. Во втором приближении по градиенту плотности и с учетом уменьшения с высотой ускорения свободного падения g(y) задача сведена к линейному дифференциальному уравнению. Его решением получены универсальные формулы для неоднородностной добавки к резольвентной функции fn(b), а также к вертикальной и горизонтальной координатам δy(b), δx(b), b = tgθ - наклон траектории. Подробно рассмотрен случай квадратичного сопротивления.
преобразование Лежандра, резольвентная функция, степенной закон сопротивления, линейная неоднородность плотности.
On integrating the projectile motion equations of a heavy point in medium with height decreasing density, pp. 120-132The resolvent method based on Legendre transformation was applied to integrate ballistic equations of a heavy point mass in inhomogeneous medium with the drag force being power-law with respect to speed, at that the coefficient of the drag force decreases linearly with height y. General expressions were obtained for resolvent function a′′bb(b) with a(b) being an intercept and b = tgθ, where я is inclination angle. In the second order by gradient c/m−1 of perturbative approach, the universal formulas for δa′′bb(b)-, δx(b)-, δy(b)-additions were derived. The case of Releigh resistance was considered particularly in frames of the method above and inhomogeneity influence on the motion was investigated. The falling of gravity g(y) is taken into consideration too.
-
В работе найдено семейство периодических в абсолютном пространстве решений (хореографий) в классической задаче о движении тяжелого твердого тела с неподвижной точкой на нулевой константе площадей. Данное семейство включает в себя известные решения Делоне (для случая Ковалевской), частные решения для случая Горячева-Чаплыгина, а также решения Стеклова.
Показано, что при ненулевом значении интеграла площадей соответствующие решения являются периодическими в равномерно вращающейся вокруг вертикали системе координат (относительными хореографиями).For the classical problem of motion of a rigid body about a fixed point with zero integral of areas, the paper presents a family of solutions which are periodic in the absolute space. Such solutions are known as choreographies. The family includes the famous Delaunay solution in the case of Kovalevskaya, some particular solutions in the Goryachev-Chaplygin case and Steklov's solution.
It is shown that if the integral of areas is zero, the solutions are periodic but with respect to a coordinate frame that rotates uniformly about the vertical (relative choreographies).
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.



