Текущий выпуск Выпуск 3, 2025 Том 35
Результыты поиска по 'partition of a set':
Найдено статей: 9
  1. В работе вводится понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Показано, что всякая функция, заданная и непрерывная на замыкании $X$ открытого ограниченного множества $X_0\subseteq\mathbb R^n$, является правильной (принадлежит пространству $\langle{\rm G(}X),\|\cdot\|\rangle$). Доказана полнота пространства ${\rm G}(X)$ по $\sup$-норме $\|\cdot\|$. Оно является замыканием пространства ступенчатых функций. Во второй части работы определено и исследовано пространство ${\rm G}^J(X)$, отличающееся от пространства ${\rm G}(X)$ тем, что в его определении вместо разбиений используются $J$-разбиения, элементы которых — измеримые по Жордану открытые множества. Перечисленные выше свойства пространства ${\rm G}(X)$ переносятся на пространство ${\rm G}^J(X)$. В заключительной части работы определено понятие $J$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по Жордану замыкание открытого ограниченного множества $X_0\subseteq\mathbb R^n$, а функция $f\colon X\to\mathbb R$ интегрируема по Риману, то она $J$-интегрируема. При этом значения интегралов совпадают. Все функции $f\in{\rm G}^J(X)$ являются $J$-интегрируемыми.

    The paper introduces the concept of a regulated function of several variables $f\colon X\to\mathbb R$, where $X\subseteq \mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\subseteq\mathbb R^n$, is regulated (belongs to the space $\langle{\rm G(}X),\|\cdot\ |\rangle$). The completeness of the space ${\rm G}(X)$ in the $\sup$-norm $\|\cdot\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\rm G}^J(X)$ is defined and studied, which differs from the space ${\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\rm G}(X)$ listed above carry over to the space ${\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\subseteq\mathbb R^n$, and the function $f\colon X\to\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\in{\rm G}^J(X)$ are $J$-integrable.

  2. В предыдущей работе авторов введено понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Пространство ${\mathrm G}(X)$ таких функций банахово по $\sup$-норме и является замыканием пространства ступенчатых функций. В настоящей работе определено и исследовано пространство ${\mathrm G}^F(X)$, отличающееся от ${\mathrm G}(X)$ тем, что здесь в определении правильных функций многих переменных вместо специальных разбиений фигурируют $F$-разбиения: их элементами являются измеримые по обобщенной мере Жордана (по мере $m_{_{\!F}}$) непустые открытые множества. (Через $F$ обозначена функция, порождающая меру $m_{_{\!F}}$.) Во второй части работы определено понятие $F$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по мере $m_{_{\!F}}$ замыкание непустого открытого ограниченного множества $X_0\subseteq{\mathbb R}^n$, а функция $f\colon X\to {\mathbb R}$ интегрируема в смысле Римана–Стилтьеса относительно меры $m_{_{\!F}}$, то она $F$-интегрируема. При этом значения кратных интегралов совпадают. Все функции из пространства ${\mathrm G}^F(X)$ являются $F$-интегрируемыми. Доказаны основные свойства $F$-интеграла Римана–Стилтьеса.

    In the previous work of the authors, the concept of a regulated function of several variables $f\colon X\to\mathbb R$ was introduced, where $X\subseteq \mathbb R^n.$ The definition is based on the concept of a special partition of the set $X$ and the concept oscillation of the function $f$ on the elements of the partition. The space ${\rm G}(X)$ of such functions is Banach in the $\sup$-norm and is the closure of the space of step functions. In this paper, the space ${\rm G}^F(X)$ is defined and studied, which differs from ${\rm G}(X)$ in that here, in defining regulated functions of several variables, instead of special partitions, $F$-partitions are used: their elements are non-empty open sets measurable by the generalized Jordan measure (by the measure $m_{_{\!F}}$). (Symbol $F$ denotes the function generating the measure $m_{_{\!F}}.$) In the second part of the work, the concept of $F$-integrability of functions of several variables is defined. It is proved that if $X$ is the closure of a non-empty open bounded set $X_0\subseteq {\mathbb R}^n,$ measurable with respect to measure $m_{_{\!F}},$ and the function $f\colon X\to {\mathbb R}$ is integrable in the Riemann–Stieltjes sense with respect to the measure $m_{_{\!F}}$, then it is $F$-integrable. In this case, the values of the multiple integrals coincide. All functions from the space ${\rm G}^F(X)$ are $F$-integrable. The main properties of the Riemann–Stieltjes $F$-integral are proved.

  3. Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве и на конечном промежутке времени, зависящая от параметра. Изучаются множества достижимости и интегральные воронки дифференциального включения, соответствующего управляемой системе, содержащей параметр. При исследовании многочисленных задач теории управления и дифференциальных игр, конструировании их решений и оценивании погрешностей применяются различные теоретические подходы и ассоциированные с ними вычислительные методы. К упомянутым задачам принадлежат, например, различного рода задачи о сближении, разрешающие конструкции которых могут быть описаны достаточно просто в терминах множеств достижимости и интегральных воронок. В настоящей работе изучается зависимость множеств достижимости и интегральных воронок от параметра: оценивается степень этой зависимости от параметра при определенных условиях на управляемую систему. Степень зависимости интегральных воронок исследована на предмет изменения их объема при варьировании параметра. Для оценки этой зависимости вводятся системы множеств в фазовом пространстве, аппроксимирующие множества достижимости и интегральные воронки на заданном промежутке времени, отвечающие конечному разбиению этого промежутка. При этом сначала оценивается степень зависимости аппроксимирующей системы множеств от параметра, и затем эта оценка используется при оценке зависимости объема интегральной воронки дифференциального включения от параметра. Такой подход естественен и особенно полезен при изучении конкретных прикладных задач управления, при решении которых в конечном итоге приходится иметь дело не с идеальными множествами достижимости и интегральными воронками, а с их аппроксимациями, отвечающими дискретному представлению временного промежутка.

    We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval, which depends on a parameter. Reachable sets and integral funnels of a differential inclusion corresponding to a control system containing a parameter are studied. When studying numerous problems of control theory and differential games, constructing their solutions and estimating errors, various theoretical approaches and associated computational methods are used. The problems mentioned above include, for example, various types of approach problems, the resolving constructions of which can be described quite simply in terms of reachable sets and integral funnels. In this paper, we study the dependence of reachable sets and integral funnels on a parameter: the degree of this dependence on a parameter is estimated under certain conditions on the control system. The degree of dependence of the integral funnels is investigated for the change in their volume with a change in the parameter. To estimate this dependence, systems of sets in the phase space are introduced that approximate the reachable sets and integral funnels on a given time interval corresponding to a finite partition of this interval. In this case, the degree of dependence of the approximating system of sets on the parameter is first estimated, and then this estimate is used in estimating the dependence of the volume of the integral funnel of the differential inclusion on the parameter. This approach is natural and especially useful in the study of specific applied control problems, in solving which, in the end, one has to deal not with ideal reachable sets and integral funnels, but with their approximations corresponding to a discrete representation of the time interval.

  4. Пусть $X_0\subseteq\mathbb R^n$ — непустое открытое множество и $X_0\subseteq X\subseteq\overline X_0$. Допускается, что множество $X_0$ не ограничено и/или имеет счетное число компонент связности. В работе исследуются некоторые пространства функций $f\colon X\to\mathbb R$, наделенные специальной нормой $\|\cdot\|$. В определении нормы фигурирует $n$-мерный вектор $(\Delta x)^{-1}\Delta f$, являющийся аналогом отношения $\frac{\Delta f}{\Delta x}$, порождающего понятие производной функции одной переменной. Вектор $(\Delta x)^{-1}\Delta f$ можно ассоциировать с вектором $\mathrm{grad}\,f(\cdot)$. Обратимая матрица $\Delta x$ порядка $n$ состоит из специальных приращений аргумента ${x\in \mathbb R^n}$, а вектор $\Delta f$ состоит из специальных приращений функции $f$. Доказан ряд свойств вектора $(\Delta x)^{-1}\Delta f$, получена точная формула для его евклидовой нормы. Доказана полнота по специальной норме $\|\cdot\|$ пространства $\mathcal G(X)$, состоящего из непрерывных ограниченных функций $f\colon X\to\mathbb R$ и имеющих дополнительные ограничения типа ограничений Липшица–Гёльдера. Подобные функции играют важную роль при решении задач математической физики. Исследован ряд актуальных подпространств пространства $\mathcal G(X)$, доказано, что два из них банаховы, одно из них при $n=1$ и при определенных условиях является замыканием пространства кусочно-линейных функций $f\colon X\to\mathbb R$.

    Let $X_0\subseteq\mathbb R^n$ be a nonempty open set and $X_0\subseteq X\subseteq\overline X_0$. We admit that the set $X_0$ is unbounded and/or has a countable number of connected components. In this paper, we study some spaces of functions $f\colon X\to\mathbb R$ endowed with a special norm $\|\cdot\|$. The definition of the norm involves an $n$-dimensional vector $(\Delta x)^{-1}\Delta f$, which is an analogue of the relation $\frac{\Delta f}{\Delta x}$ generating the concept of the derivative of a function of one variable. The vector $(\Delta x)^{-1}\Delta f$ can be associated with the vector $\mathrm{grad}\,f(\cdot)$. The invertible matrix $\Delta x$ of order $n$ consists of special increments of the argument $x\in \mathbb R^n$, and the vector $\Delta f$ consists of special increments of the function $f$. A number of properties of the vector $(\Delta x)^{-1}\Delta f$ is proved, and an exact formula for its Euclidean norm is obtained. We prove the completeness with respect to a special norm $\|\cdot\|$ of the space $\mathcal G(X)$ consisting of continuous bounded functions $f\colon X\to\mathbb R$ and having additional restrictions of the Lipschitz–Hölder type. Such functions play an important role in solving mathematical physics problems. A number of important subspaces of the space $\mathcal G(X)$ is investigated. It is proved that two of them are Banach, and one of them, for $n=1$ and under certain conditions, is the closure of the space of piecewise linear functions $f\colon X\to\mathbb R$.

  5. Дьяконова Т.А., Храпов С.С., Хоперсков А.В.
    Проблема граничных условий для уравнений мелкой воды, с. 401-417

    Обсуждается проблема выбора граничных условий в случае численного интегрирования уравнений мелкой воды на существенно неоднородном рельефе местности. При моделировании нестационарных течений поверхностных вод имеется динамическая граница, разделяющая жидкость и сухое дно. Для задач сезонных пойменных затоплений, ливневых паводков, выходов волн цунами на берег ситуация осложняется возникновением до- и сверхкритических режимов течений. Анализ использования различных способов задания условий для физических величин при достижении жидкости границы расчетной области показывает преимущества при использовании условий типа «водопад» при наличии сильных неоднородностей рельефа земной поверхности. При наличии водопада на границе расчетной области и неоднородности рельефа в окрестности границы может возникать участок, на котором формируется область критического течения с образованием гидравлического скачка, что существенно ослабляет влияние водопада на структуру потока вверх по течению.

    Dyakonova T.A., Khrapov S.S., Khoperskov A.V.
    The problem of boundary conditions for the shallow water equations, pp. 401-417

    The problem of choice of boundary conditions is discussed for the case of numerical integration of the shallow water equations on a substantially irregular relief. While modeling unsteady surface water flows there is a dynamic boundary that partitions liquid and dry bottom. The situation is complicated by the emergence of sub- and supercritical flow regimes for the problems of seasonal floodplain flooding, flash floods, tsunami landfalls. Analysis of the use of various methods of setting conditions for the physical quantities of liquid at the settlement of the boundary shows the advantages of using the waterfall type conditions in the presence of strong heterogeneities of landforms. When there is a waterfall on the border of computational domain and heterogeneity of the relief in the vicinity of the boundary, a portion may occur which is formed by the region of critical flow with the formation of a hydraulic jump, which greatly weakens the effect of the waterfall on the flow pattern upstream.

  6. Рассматривается задача стабилизации около нуля в условиях воздействия помехи и неточных данных в терминах дифференциальной игры преследования. Динамика описывается нелинейной автономной системой дифференциальных уравнений. Множество значений управлений преследователя является конечным, убегающего (помехи) — компакт. Целью управления, то есть целью преследователя, является приведение, в рамках конечного времени, траектории в любую наперед заданную окрестность некоторого шара с центром в нуле и ненулевым радиусом вне зависимости от действий помехи. Управление преследователя определяется в дискретные моменты времени на основании момента разбиения и значения из фазового пространства, которое равно сумме фазовых координат в момент разбиения и значения некоторой вспомогательной функции. Значение вспомогательной функции ограничено по норме наперед заданной величиной, которая считается известной преследователю. В работе получены условия соотношения параметров задачи и числа, которое ограничивает норму вспомогательной функции, позволяющие осуществить поимку в указанном смысле. Выигрышное управление строится конструктивно и использует фиксированный шаг разбиения временного интервала. Кроме того, получена оценка времени поимки.

    The problem of stabilization around zero under disturbance and uncertain data in terms of differential pursuit game is considered. The dynamics are described by a nonlinear autonomous system of differential equations. The set of control values of the pursuer is finite, and that of the evader (interference) is compact. The goal of the control, that is, the goal of the pursuer, is to bring, within a finite time, the trajectory to any predetermined neighborhood of some ball centered at zero and a non-zero radius, regardless of the actions of the interference. The pursuer's control is determined at discrete moments of time on the basis of the partition moment and the value from the state space, which is equal to the sum of state coordinates at the partition moment and the value of some auxiliary function. The value of the auxiliary function is restricted by the norm by a predetermined value, which is considered to be known to the pursuer. In this paper, we obtain conditions for the relationship between the parameters of the problem and the number that limits the norm of the auxiliary function, allowing for capture in the specified sense. The winning control is constructed constructively and uses a fixed step of dividing the time interval. In addition, an estimate of the capture time is obtained.

  7. Исследование посвящено построению параллельного алгоритма решения задачи «на узкие места», связанного с поиском разбиения конечного множества заданий на конечное число исполнителей (работников). Описывается алгоритм нахождения оптимального разбиения заданий с использованием метода динамического программирования с элементами параллельных вычислений при построении массива значений функции Беллмана. Выполнена оценка вычислительной сложности двух алгоритмов (с использованием и без использования параллельной структуры). Создана программа, с помощью которой проведен вычислительный эксперимент по решению поставленной задачи на суперкомпьютере «УРАН». Выполнен сравнительный анализ реализации алгоритмов как с использованием, так и без использования параллельной структуры. Представлена зависимость времени счета реализованной программы на суперкомпьютере от количества вычислительных ядер.

    The aim of the study is to construct a parallel algorithm for solving a bottleneck (minmax) problem connected with partitioning a finite set of tasks between a finite number of agents. We describe the algorithm of finding an optimal partition of tasks through dynamic programming with a parallel computation of the Bellman function and provide a computational complexity estimate for the two algorithms (with and without the parallel construction). The algorithm was implemented for the Uran supercomputer, and a computational experiment was conducted; computation time was measured for the serial algorithm and for the parallel one on varying numbers of processor cores.

  8. Рассматривается решение дифференциальной игры сближения-уклонения с использованием метода программных итераций. Основная цель состоит в построении множества позиционного поглощения, соответствующего разбиению пространства позиций игры, отвечающему фундаментальной теореме об альтернативе Н.Н. Красовского, А.И. Субботина. Для построения используется оператор программного поглощения, определяемый целевым множеством в задаче о сближении. Множество, формирующее фазовые ограничения, поэтапно преобразуется упомянутым оператором, реализуя последовательность, предел которой совпадает с множеством позиционного поглощения. Предполагается, что целевое множество замкнуто, а множество, определяющее фазовые ограничения исходной задачи, имеет замкнутые сечения, каждое из которых соответствует фиксации момента времени. Установлены свойства, имеющие смысл односторонней непрерывности множества позиционного поглощения при изменении множеств, определяющих исходную дифференциальную игру. Показано, что предел итерационной процедуры совпадает с множеством успешной разрешимости в классе многозначных обобщенных квазистратегий.

    The solution of a differential game of guidance-evasion on the basis of the programmed iterations method is considered. The basic goal consists in the construction of a set of positional absorption corresponding to alternative partition following from the fundamental alternative theorem of N.N. Krasovskii and A.I. Subbotin. For construction, an operator of programmed absorption defined by the target set in a guidance problem is used. The set defining phase constraints is gradually transformed by the above-mentioned operator; therefore, the sequence for which the corresponding limit coincides with the set of positional absorption is realized. It is assumed that the target set is closed and the set defining phase constraints of initial problem has closed sections corresponding to fixation of time. Properties having the sense of one-sided continuity of the positional absorption set under variation of sets defining initial differential game are established. It is shown that the limit of iterated procedure coincides with the set of successful solvability in a class of set-valued generalized quasistrategies.

  9. В условиях Каратеодори исследуется сходимость ломаных Эйлера к решениям системы. Множество всевозможных разбиений оснащается псевдометрикой. Показано, что сходимость разбиений к рассматриваемому промежутку гарантирует сходимость ломаных Эйлера к пучку решений системы.

    Khlopin D.V.
    The convergence of Euler's broken lines, pp. 163-164

    We consider the convergence of Euler's broken lines to trajectories of the system under Caratheodory's conditions. We introduce a pseudometric on the set of closed subsets of the time segment, taking into account the system. We prove that the convergence of partitions guarantees the convergence of Euler's broken lines to the funnel of solutions of the system.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref