Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Об одном подклассе однолистных функций с отрицательными коэффициентами, заданном линейным оператором, с. 306-317В работе вводится и исследуется подкласс $A_{n} (m,\beta,p,q,\lambda)$ однолистных функций с отрицательными коэффициентами, определяемый новым линейным оператором $J^\lambda$ в открытом единичном круге $\mathcal{U}=\{z \in \mathbb{C} : |z| < 1\}$. Основной задачей является изучение следующих свойств и характеристик: оценки коэффициентов, теоремы искажения, теоремы о замыкании, окрестность функции, радиусы звездообразности, выпуклости и почти выпуклости функций, принадлежащих классу $A_{n} (m,\beta,p,q,\lambda)$.
-
Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.
-
Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.
-
Применение крайних под- и надаргументов, выпуклых и вогнутых оболочек для поиска глобальных экстремумов, с. 483-500Для вещественнозначных функций $f$, заданных на подмножествах вещественных линейных пространств, введены понятия крайних подаргументов и крайних надаргументов, а также понятия естественных выпуклой $\check{f}$ и вогнутой $\hat{f}$ оболочек. Показано, что для любой строго выпуклой функции $g$ любая точка глобального максимума функции $f+g$ является крайним подаргументом для функции $f$. Аналогичный результат получен для функций вида $f/v + g$. На основе этих результатов предложен метод, облегчающий поиск глобальных экстремумов функций в некоторых случаях. Доказано, что при определенных условиях функции $f/v+g$ и $\hat{f}/v+g$ имеют одинаковые глобальные максимумы и одинаковые точки глобального максимума. Приведены необходимые и достаточные условия естественности выпуклой оболочки функции. Указано достаточное условие того, что при сужении области определения $f$, значения вогнутой оболочки $\hat{f}$ на суженной области не меняются. Найдены крайние под- и надаргументы для непрерывной нигде не дифференцируемой функции Кобаяши-Грея-Такаги $K(x)$ на отрезке $[0;1]$. Кроме того, на отрезке $[0;1]$ вычислены глобальные экстремумы функции $K(x)/\cos{x}$ и глобальный максимум функции $K(x)-\sqrt{x(1-x)}$. Работа снабжена примерами и проиллюстрирована графиками.
-
Для динамической системы, подверженной воздействиям управления и помехи и содержащей последействие в управляющих силах, рассматривается задача об управлении с оптимальным гарантированным результатом для показателя качества, представляющего собой евклидову норму совокупности отклонений движения системы в заданные моменты времени от заданных целей. На основе функциональной трактовки, опирающейся на своеобразный прогноз движений, исходная задача сводится к вспомогательной дифференциальной игре для системы без запаздывания и с терминальной платой. Функция цены этой игры вычисляется на базе конструкции выпуклых сверху оболочек вспомогательных функций из метода стохастического программного синтеза, оптимальные стратегии строятся методом экстремального сдвига на сопутствующие точки. Рассматриваются иллюстрирующие примеры, приводятся результаты численных экспериментов.
-
В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.
В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.
С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.
Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.
-
О численном решении дифференциальных игр с нетерминальной платой в классах смешанных стратегий, с. 34-48Рассматривается антагонистическая линейно-выпуклая дифференциальная игра с показателем качества, оценивающим совокупность отклонений траектории движения в наперед заданные моменты времени от заданных целевых точек. Исследуется случай, когда не выполняется условие седловой точки в маленькой игре, также известное как условие Айзекса. Игра формализуется в классах смешанных стратегий управления игроков. Описывается численный метод для приближенного вычисления цены игры и построения оптимальных стратегий. Метод основывается на попятном построении выпуклых сверху оболочек вспомогательных программных функций. Приводятся результаты численных экспериментов на модельных примерах.
-
В статье для игр в нормальной формой при интервальной неопределенности вводится концепция сильного коалиционного равновесия. Эта концепция основана на синтезе трех понятий: индивидуальной рациональности, коллективной рациональности для игр в нормальной форме без побочных платежей и коалиционной рациональности. Для простоты изложения, сильное коалиционное равновесие рассматривается для игр 4 лиц при неопределенности. Достаточные условия существования сильного коалиционного равновесия в чистых стратегиях устанавливаются с помощью седловой точки специального вида свертки Гермейра. Наконец, следуя подходу Бореля, Неймана и Нэша, доказана теорема существования сильного коалиционного равновесия в смешанных стратегиях при стандартных для теории игр условиях (компактность и выпуклость множеств стратегий игроков, компактность множества неопределенностей и непрерывность функций выигрыша).
-
Однотипная задача импульсной встречи в заданный момент времени с терминальным множеством в форме кольца, с. 197-211Рассматривается линейная дифференциальная игра с заданным моментом окончания $p$. Множества достижимости игроков являются $n$-мерными шарами. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Тот факт, что терминальное множество не является выпуклым, потребовал привлечения дополнительной теории, позволяющей находить сумму и разность Минковского для кольца и шара в $n$-мерном пространстве. На выбор управления первого игрока накладывается импульсное ограничение. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым усложняя задачу. Управление второго игрока стеснено геометрическими ограничениями. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. Построен максимальный стабильный мост, ведущий в заданный момент времени на терминальное множество. Стабильный мост определяется функциями внешнего и внутреннего радиусов, которые вычислены в явном виде.
-
В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$D^{(\alpha)}z_i = a z_i + u_i - v,$$ где $D^{(\alpha)}f$ - производная по Капуто порядка $\alpha \in (0, 1)$ функции $f$. Дополнительно предполагается, что убегающий в процессе игры не покидает пределы выпуклого многогранного множества с непустой внутренностью. Убегающий использует кусочно-программные стратегии, преследователи - кусочно-программные контрстратегии. Множество допустимых управлений - выпуклый компакт, целевые множества - начало координат, $a$ - вещественное число. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи преследования.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.