Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'вычислимость':
Найдено статей: 5
  1. Работа посвящена связи параллельных и последовательных вычислений. С одной стороны, рассматривается класс словарных предикатов, основанных на последовательных вычислениях, ограниченных по памяти константами и имеющих полиномиальную временную сложность. С другой стороны, рассматривается класс словарных предикатов, вычислимых на параллельных альтернирующих машинах за логарифмическое время. Доказано совпадение соответствующих классов. Предложено направление использования полученных результатов для взаимного преобразования и сочетания вычислений на молекулярных биоподобных последовательных машинах и параллельных вычислениях на векторно-матричных компьютерах. Предполагаемые области применения: обработка изображений в реальном масштабе времени для задач управления, анализ больших текстов и других больших данных.

  2. Рассматривается проблема эффективной вычислимости разрешимых моделей классификации конечных объектов. Исследуется конструктивизация условий симультанности (предельно короткого цикла) принятия решения в классификации. Симультанность ("однотактность") достигается параллельным сравнением компонент неизвестной реализации с информативными элементами всех эталонов в обучающей выборке. Конструктивизация условий симультанности предусматривает: выделение информативных элементов (идентификационных меток) в информативных зонах классифицируемых множеств; параллельное покомпонентное сравнение неизвестной реализации конечного объекта с информативными элементами всех эталонов из обучающей выборки. Полученные результаты симультанной схемы принятия решений в классификации интерпретируются в нейронных сетях, в обобщенной модели распознавания, в задачах идентификации.

  3. Определяется параметрическое семейство конечномерных пространств специальных квадратичных сплайнов лагранжевого типа. В каждом пространстве в качестве решения начально-граничной задачи для простейшего волнового уравнения предлагается оптимальный сплайн, дающий наименьшую невязку, представляющую собой квадрат нормы в пространстве L2. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от конечных разностей дискретно заданных начальных и граничных условий исходной задачи. Формула для невязки J представляет собой положительно определенную квадратичную форму от этих же величин. Коэффициенты обеих форм вычислимы через многочлены Чебышева 2-го рода. Явный вид формулы для невязки позволяет при заданной точности вычислений ε > 0 решить неравенство J < ε2 и получить априори достаточное количество узлов разностной схемы.

    Исследования проведены для одного слоя по времени, имеющего два подслоя. Получены разностные формулы начального условия для частной производной по времени. Они позволяют формировать разностную схему для нового слоя, что, в свою очередь, позволяет продолжать итерационный вычислительный процесс по времени сколь угодно далеко.

  4. Определяется параметрическое семейство конечномерных пространств специальных квадратичных сплайнов лагранжевого типа. В каждом пространстве в качестве решения начально-граничной задачи для простейшего уравнения теплопроводности предлагается оптимальный сплайн, дающий наименьшую невязку, представляющую собой норму в пространстве L2. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от конечных разностей дискретно заданных начальных и граничных условий исходной задачи. Формула для невязки представляет собой положительно определенную квадратичную форму от этих же величин. Коэффициенты обеих форм вычислимы через многочлены Чебышева. Проведены компьютерные исследования качества аппроксимации в зависимости от параметров семейства.

  5. Изучаются проблемы разрешимости и вычислимости, предопределяющие концепцию конструктивизации в задачах классификации образов.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref