Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье приводится аналитическая классификация особенностей ранга 0 и 1 отображения момента для интегрируемого случая Ковалевской-Яхья в динамике твердого тела.
-
Хаотическое рассеяние точечного вихря круговым цилиндрическим твердым телом, движущимся в поле тяжести, с. 184-196В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.
-
Рассматриваются постановка и тестовые решения задачи динамического взаимодействия твердых тел произвольной формы в рамках дискретно-элементного моделирования. При дискретизации используется описание тел произвольной формы, составленных из элементов-сфер, жестко связанных между собой. Агломераты строились на нескольких сетках с разной размерностью, что позволило оценить влияние параметров при построении агломератов сфер и гладкости получаемой поверхности. Представлена система уравнений движения агломерата сфер относительно глобальной системы координат, интегрирование которой выполняется на модифицированной схеме Верле. Силы взаимодействия между сферами определяются на основе контактной модели Герца-Миндлина с учетом вязкого демпфирования. Тестирование метода проводилось на задаче взаимодействия двух сфер. Вычислялись траектории движения сфер, представленные агломератом сферических частиц. Полученные результаты сравнивались со случаем движения и взаимодействия сфер в одночастичном приближении.
-
В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.
-
В статье рассмотрена редукция уравнений Кирхгофа-Пуассона задачи о движении твердого тела под действием потенциальных и гироскопических сил и уравнений задачи о движении твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона. Получены аналоги уравнений Н. Ковалевского в указанных задачах. Построены два новых частных решения полиномиального класса Стеклова-Ковалевского-Горячева редуцированных дифференциальных уравнений рассматриваемых задач. Полиномиальное решение задачи о движении гиростата под действием потенциальных и гироскопических сил характеризуется свойством: квадраты второй и третьей компонент вектора угловой скорости представлены квадратными многочленами от первой компоненты этого вектора, которая является эллиптической функцией времени. Полиномиальное решение уравнений движения твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона характеризуется тем, что квадрат второй компоненты вектора угловой скорости - многочлен второго порядка, а квадрат третьей компоненты - многочлен четвертого порядка от первой компоненты этого вектора, которая находится в результате обращения гиперэллиптического интеграла.
-
В статье рассмотрены основные принципы постановок задач в механике твердого тела при наличии связей (с сухим трением и без). Основное внимание уделено предыстории начальных условий задачи, которая должна быть корректно определена таким образом, чтобы не требовалось введения дополнительных гипотез и допущений, выводящих исследование за рамки динамики твердого тела без ударов. Тогда динамика движения (и/или равновесия) твердых тел может быть описана однозначно и без каких-либо парадоксальных ситуаций (парадоксов Пэнлеве). Эта методика иллюстрируется на трех известных задачах механики: опирание твердого тела на одну точку при наличии сухого трения, движение стержня с ползунами в направляющих с сухим трением, опирание твердого тела на две точки с сухим трением («скамейка»).
-
Основной целью данной работы является построение новых высокоточных рядов вращения абсолютно твердой Земли, которые являются динамически согласованными с эфемеридой DE406/LE406. Динамика вращательного движения абсолютно твердой Земли изучается численно с помощью параметров Родрига-Гамильтона на 2000-летнем и 6000-летнем интервалах времени. Все вычисления в данном исследовании производятся с четверной точностью. Орбитальное движение возмущающих небесных тел определяется эфемеридой DE406/LE406. Результаты численного решения рассматриваемой проблемы сравниваются с полуаналитическими решениями задачи о вращении абсолютно твердой Земли SMART97 и S9000 соответственно относительно неподвижной эклиптики эпохи J2000. Начальные условия для численного интегрирования берутся из соответствующих полуаналитических решений. Исследование невязок сравнения между высокоточными численными решениями задачи о вращении абсолютно твердой Земли и полуаналитическими решениями этой задачи производятся методами наименьших квадратов и спектрального анализа. Задача решалась с учетом наиболее существенных из релятивистских возмущений во вращательном движении Земли - геодезических возмущений. В результате построены новые долгосрочные решения вращения абсолютно твeрдой Земли RERS2012 (Rigid Earth Rotation Series 2012), динамически согласованные с эфемеридой DE406/LE406 на 2000-летнем и 6000-летнем интервалах времени.
-
Рассмотрена динамика вращения твердого тела (ротатора) вокруг неглавной оси Oz, проходящей через его центр масс, с учетом диссипативных моментов: сухого трения Mfr, возникающего в опорах из-за поперечных динамических реакций, и квадратичного по угловой скорости ω аэродинамического сопротивления MR=-c|ω|ω. Показано, что уравнение динамики и вытекающие из него кинетики вращения тела качественно различны в общем и частном случаях инерционных и диссипативных параметров: осевого момента инерции Jzz, коэффициентов c и α=Mfr/√ε2+ω4 (ε - угловое ускорение). В частном случае равенства Jzz=c=α обнаружено отсутствие физически возможного решения для вращения по инерции в рамках динамики абсолютно твердого тела. Парадокс разрешается через нормализующее причинно-следственные связи введение запаздывающих величин ε(t-τ) и ω(t-τ), определяющих в согласии с принципом Даламбера поперечные реакции в опорах оси Mx,y(t-τ) и пару Mfr(t-τ). Последняя же определяла темп потери кинетического момента dKz(t)/dt в момент времени t. Кинетика вращения при этом имеет импульсивный характер так называемого фрикционно-аэродинамического удара. Также путем численного интегрирования продемонстрирована необычная угловая кинетика φ(t) затухающих колебаний ротатора под действием упругого момента Me=-κφ, характеризующаяся наличием двух фаз: кратковременного стартового участка, зависящего от начальных условий, затем резко переходящего в фазу почти синусоидальных колебаний с медленно убывающей амплитудой.
-
В работе предложен общий топологический подход к исследованию устойчивости периодических решений интегрируемых динамических систем с двумя степенями свободы. Развиваемые методы проиллюстрированы на примерах нескольких интегрируемых задач, связанных с классическими уравнениями Эйлера—Пуассона, движением твердого тела в жидкости, а также динамикой газообразных расширяющихся эллипсоидов. Данные топологические методы позволяют также отыскивать невырожденные периодические решения интегрируемых систем, что является особенно актуальным в тех случаях, когда общее решение, например, при помощи разделения переменных неизвестно.
-
В работе найдено семейство периодических в абсолютном пространстве решений (хореографий) в классической задаче о движении тяжелого твердого тела с неподвижной точкой на нулевой константе площадей. Данное семейство включает в себя известные решения Делоне (для случая Ковалевской), частные решения для случая Горячева-Чаплыгина, а также решения Стеклова.
Показано, что при ненулевом значении интеграла площадей соответствующие решения являются периодическими в равномерно вращающейся вокруг вертикали системе координат (относительными хореографиями).
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.