Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'измеримые пространства':
Найдено статей: 13
  1. В работе вводится понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Показано, что всякая функция, заданная и непрерывная на замыкании $X$ открытого ограниченного множества $X_0\subseteq\mathbb R^n$, является правильной (принадлежит пространству $\langle{\rm G(}X),\|\cdot\|\rangle$). Доказана полнота пространства ${\rm G}(X)$ по $\sup$-норме $\|\cdot\|$. Оно является замыканием пространства ступенчатых функций. Во второй части работы определено и исследовано пространство ${\rm G}^J(X)$, отличающееся от пространства ${\rm G}(X)$ тем, что в его определении вместо разбиений используются $J$-разбиения, элементы которых — измеримые по Жордану открытые множества. Перечисленные выше свойства пространства ${\rm G}(X)$ переносятся на пространство ${\rm G}^J(X)$. В заключительной части работы определено понятие $J$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по Жордану замыкание открытого ограниченного множества $X_0\subseteq\mathbb R^n$, а функция $f\colon X\to\mathbb R$ интегрируема по Риману, то она $J$-интегрируема. При этом значения интегралов совпадают. Все функции $f\in{\rm G}^J(X)$ являются $J$-интегрируемыми.

  2. В предыдущей работе авторов введено понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Пространство ${\mathrm G}(X)$ таких функций банахово по $\sup$-норме и является замыканием пространства ступенчатых функций. В настоящей работе определено и исследовано пространство ${\mathrm G}^F(X)$, отличающееся от ${\mathrm G}(X)$ тем, что здесь в определении правильных функций многих переменных вместо специальных разбиений фигурируют $F$-разбиения: их элементами являются измеримые по обобщенной мере Жордана (по мере $m_{_{\!F}}$) непустые открытые множества. (Через $F$ обозначена функция, порождающая меру $m_{_{\!F}}$.) Во второй части работы определено понятие $F$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по мере $m_{_{\!F}}$ замыкание непустого открытого ограниченного множества $X_0\subseteq{\mathbb R}^n$, а функция $f\colon X\to {\mathbb R}$ интегрируема в смысле Римана–Стилтьеса относительно меры $m_{_{\!F}}$, то она $F$-интегрируема. При этом значения кратных интегралов совпадают. Все функции из пространства ${\mathrm G}^F(X)$ являются $F$-интегрируемыми. Доказаны основные свойства $F$-интеграла Римана–Стилтьеса.

  3. В данной статье исследуются специфические особенности соотношений между топологической и алгебраической структурами квазигрупп и луп. Исследуется измеримость подмножеств топологических квазигрупп и луп относительно инвариантных мер. Изучается семейство неизмеримых подмножеств в локально компактных недискретных лупах. Выясняется существование локально $\mu$-нулевых подмножеств, не являющихся $\mu$-нулевыми, в локально компактной левой квазигруппе, не являющейся $\sigma$-компактной. Исследуются факторпространства измеримых пространств на квазигруппах. Более того, изучаются однородные пространства квазигрупп, а также счетная отделимость подмножеств в них.

  4. Пусть $(U,\rho )$ - полное метрическое пространство, ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, и ${\mathcal R} ({\mathbb R},U)$ - пространства (сильно) измеримых функций $f:{\mathbb R}\to U$, преобразования Бохнера ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ которых являются рекуррентными функциями со значениями в метрических пространствах $L^p([-l,l],U)$ и $L^1([-l,l], (U,\rho ^{ \prime }))$, где $l>0$ и $(U,\rho^{ \prime })$ - полное метрическое пространство с метрикой $\rho ^{ \prime }(x,y)=\min\{ 1, \rho (x,y)\} ,$ $x, y\in U.$ Аналогично определяются пространства ${\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ и ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ функций (многозначных отображений) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ со значениями в полном метрическом пространстве $({\mathrm {cl}}\,_{ b}\, U, {\mathrm {dist}})$ непустых замкнутых ограниченных подмножеств метрического пространства $(U,\rho )$ с метрикой Хаусдорфа ${\mathrm {dist}}$ (при определении многозначных отображений $F\in {\mathcal R} ({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ рассматривается также метрика ${\mathrm {dist}} ^{ \prime }(X,Y)=\min\{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$). Доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ (соответственно $f\in {\mathcal R}^p ({\mathbb R},U)$) многозначных отображений $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (соответственно $F\in {\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$), для которых множества почти периодов подчинены множествам почти периодов многозначных отображений $F$. Для функций $g\in {\mathcal R} ({\mathbb R},U)$ приведены условия существования сечений $f\in {\mathcal R} ({\mathbb R},U)$ и $f\in {\mathcal R}^p ({\mathbb R},U),$ для которых $\rho (f(t),g(t))=\rho (g(t),F(t))$ при п.в. $t\in {\mathbb R}$. В предположении, что для любого $\varepsilon >0$ существует относительно плотное множество общих $\varepsilon $-почти периодов функции $g$ и многозначного отображения $F$, также доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ таких, что $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ при п.в. $t\in {\mathbb R}$, где $\eta :[0,+\infty ) \to [0,+\infty )$ - произвольная неубывающая функция, для которой $\eta (0) =0$ и $\eta (\xi )>0$ при всех $\xi >0$, при этом $f\in {\mathcal R}^p ({\mathbb R},U)$ в случае $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ При доказательстве используется равномерная аппроксимация функций $f\in {\mathcal R} ({\mathbb R},U)$ элементарными функциями из пространства ${\mathcal R} ({\mathbb R},U)$ множества почти периодов которых подчинены множествам почти периодов функций $f$.

     

  5. Рассматриваются конструкции, связанные с представлением свободных $\sigma$-мультипликативных ультрафильтров широко понимаемых измеримых пространств. В основе построений находятся представления, связанные с применением открытых ультрафильтров в случаях кофинитной и косчетной топологий. Такие ультрафильтры сохраняются (как максимальные фильтры) при замене топологий соответственно алгеброй и $\sigma$-алгеброй, порожденных упомянутыми топологиями. В (основном) случае косчетной топологии устанавливается единственность $\sigma$-мультипликативного свободного ультрафильтра, составленного из непустых открытых множеств. Показано, что данное свойство сохраняется для $\sigma$-алгебр, содержащих косчетную топологию. Указаны две топологии пространства ограниченных конечно-аддитивных борелевских мер, для которых ультрафильтр непустых открытых множеств определяет одноэлементный нарост секвенциально замкнутого множества мер Дирака, возникающий при построении замыкания.

  6. Рассматривается абстрактная задача о достижимости при ограничениях асимптотического характера, решение в которой отождествляется с множеством притяжения в классе ультрафильтров пространства обычных решений. Исследуется нарост упомянутого множества по отношению к замыканию множества результатов, доставляемых точными решениями (данное понятие на идейном уровне соответствует схеме Дж. Варги, хотя и применяется в случае ограничений более общего характера). Для представления упомянутого (основного) множества притяжения привлекается соответствующий аналог последнего, реализуемый в пространстве обобщенных элементов. Для получаемого таким образом вспомогательного множества притяжения анализируется нарост и исследуется его связь с наростом основного множества притяжения. Получены условия отождествимости наростов основного и вспомогательного множеств притяжения. Общие положения детализируются для случая, когда обобщенные элементы определяются в виде ультрафильтров широко понимаемых измеримых пространств, где за реализацию наростов оказываются ответственными свободные ультрафильтры. Показано, что при наличии нароста множество допустимых обобщенных элементов не совпадает с замыканием какого-либо множества обычных решений (не допускает стандартной реализации).

  7. Пусть $n,m,\ell,s\in\mathbb{N}$ - заданные числа, $\Pi\subset\mathbb{R}^n$ - измеримое ограниченное множество, $\mathcal{X}, \mathcal{Z}, \mathcal{U}$ - банаховы идеальные пространства измеримых на $\Pi $ функций, $\mathcal{D}\subset\mathcal{U}^{s}$ - выпуклое множество, $\mathcal{A}$ - некоторый класс линейных ограниченных операторов $A:\mathcal{Z}^{m} \to\mathcal{X}^{\ell}$. Изучается управляемое функционально-операторное уравнение типа Гаммерштейна: $$ x(t)=\theta(t)+ A\Bigl[f(.,x(.),u(.)) \Bigr](t), \quad t\in \Pi , \quad x\in\mathcal{X}^{\ell}, \qquad \qquad (1) $$ где набор параметров $\{ u,\theta,A\}\in \mathcal{D}\times \mathcal{X}^{\ell}\times \mathcal{A}$ - управляющий; $f(t,x,v): \Pi\times\mathbb{R}^{\ell}\times\mathbb{R}^{s}\to\mathbb{R}^{m}$ - заданная функция, измеримая по $t\in\Pi$, непрерывная по $\{x,v\}\in\mathbb{R}^\ell\times\mathbb{R}^s$ и удовлетворяющая некоторым естественным предположениям. Уравнение $(1)$ является удобной формой описания широкого класса управляемых распределенных систем. Для указанного уравнения доказывается теорема о достаточных условиях глобальной разрешимости для всех $u\in\mathcal{D}$, $A\in\mathcal{A}$ и $\theta$ из поточечно ограниченного множества. Для исходного уравнения определяются мажорантное и минорантное неравенства, получаемые из уравнения $(1)$ оценкой правой части соответственно сверху и снизу. Теорема доказывается при условии глобальной разрешимости мажорантного и минорантного неравенств. В качестве приложения полученных общих результатов доказывается теорема о тотальной (по всему множеству допустимых управлений) глобальной разрешимости смешанной задачи для системы гиперболических уравнений первого порядка с управляемыми старшими коэффициентами.

  8. Исследуются свойства ультрафильтров (у/ф) и максимальных сцепленных систем (МСС) на широко понимаемом измеримом пространстве (ИП), а также некоторые представления сцепленных (не обязательно максимальных) систем и фильтров на упомянутом ИП. Исследуются условия, обеспечивающие максимальность сцепленных семейств (систем), а также естественные представления для битопологических пространств (БТП), точками которых являются у/ф и МСС. Изучаются оснащения множеств сцепленных семейств и фильтров, отвечающие схемам Волмэна и Стоуна, а также связь данных оснащений (топологиями) с аналогичными оснащениями множеств у/ф и МСС, приводящими к вышеупомянутым БТП. Исследуются свойства определяемых естественным образом произведений сцепленных семейств и МСС на двух (широко понимаемых) ИП. Показано, что МСС на произведении $\pi$-систем (то есть на семействе «измеримых» прямоугольников) исчерпываются произведениями соответствующих МСС на исходных пространствах.

  9. Пусть n,m, ℓ, s ∈ N – заданные числа, П ⊂ Rnизмеримое по Лебегу множество, X, Z – банаховы идеальные пространства измеримых на П функций. Рассматривается нелинейное операторное уравнение:

    x = θ + AF[x], x ∈ X, (1)

    где A : Zm → X – линейный ограниченный оператор, F : X → Zm – некоторый оператор. Уравнение (1) является естественной формой описания широкого класса сосредоточенных и распределенных систем. Ранее В.П. Политюковым был предложен метод монотонизации для обоснования разрешимости уравнения вида (1) и получения поточечных оценок решения. Суть его состояла в том, что разрешимость уравнения (1) доказывалась (помимо прочих условий) для случая, когда I) оператор F допускал поправку вида G = λI до монотонного оператора F[x] = F[θ+x]+G[x] такую, что II) (I +AG)−1A > 0 (λ > 0, I  тождественный оператор). Как видно из примеров, приведенных в данной статье, условия I) и II) могут противоречить друг другу, что сужает сферу применения метода. Основной результат статьи в том, что в случае оператора A, обладающего свойством вольтерровости, естественным для эволюционных уравнений, требование монотонизируемости I) можно заменить требованием оценки оператора F на некотором конусном отрезке сверху и снизу через линейный оператор G плюс фиксированный элемент. Доказывается, что для глобальной разрешимости начально-краевой задачи, связанной с полулинейным эволюционным уравнением, достаточно, чтобы аналогичная начально-краевая задача, связанная с линейным уравнением, полученным путем оценки правой части исходного полулинейного уравнения на некотором конусном отрезке, имела положительное решение. В качестве иллюстрации рассматривается применение указанных результатов к системе Гурса–Дарбу, задаче Коши для волнового уравнения и первой краевой задаче для уравнения диффузии.

  10. Рассматриваются ультрафильтры широко понимаемых измеримых пространств, включая пространства с полуалгебрами и алгебрами множеств. Исследуется преобразование, имеющее смысл продолжения ультрафильтра с полуалгебры на алгебру, порожденную упомянутой полуалгеброй; показано, что данное преобразование  гомеоморфизм в смысле естественных оснащений пространств ультрафильтров, реализующих стандартные компакты (в случае измеримого пространства с алгеброй множеств реализуется пространство стоуновского представления). Исследуются вопросы представления множеств притяжения в абстрактной задаче о достижимости с ограничениями асимптотического характера, связанные с применением компактификаций в классе ультрафильтров измеримых пространств с полуалгебрами множеств, а также некоторые аналоги, использующие ультрафильтры π-систем.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref