Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.
-
Получены необходимые и достаточные условия разрешимости периодической краевой задачи для всех линейных функционально-дифференциальных уравнений второго порядка с заданной нормой функционального оператора.
-
Излагаются основы теории неосцилляции решений обыкновенного линейного однородного дифференциального уравнения n-го порядка с новыми доказательствами некоторых основных теорем: признаки неосцилляции, ее следствия, свойства неосцилляционных уравнений. Для уравнения второго порядка приводятся новые достаточные признаки неосцилляции.
-
Работа посвящена исследованию второй начально-краевой задачи для дифференциального уравнения третьего порядка псевдопараболического типа с переменными коэффициентами в многомерной области с произвольной границей. Рассматриваемое многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром и для полученного уравнения строится локально-одномерная разностная схема А.А. Самарского. С помощью принципа максимума получена априорная оценка решения локально-одномерной разностной схемы в равномерной метрике в норме $C$. Доказаны устойчивость и сходимость локально-одномерной разностной схемы.
-
В работе исследована одна обратная краевая задача для эллиптического уравнения второго порядка с дополнительным интегральным условием первого рода. Для рассматриваемой обратной краевой задачи вводится определение классического решения. С помощью метода Фурье задача сводится к решению системы интегральных уравнений. С помощью метода сжатых отображений доказывается существование и единственность решения системы интегральных уравнений. Далее доказывается существование и единственность классического решения исходной задачи.
-
Базисность системы собственных функций дифференциального оператора второго порядка с инволюцией, с. 183-196В настоящей работе мы изучаем спектральную задачу для дифференциального оператора второго порядка с инволюцией и с краевыми условиями типа Дирихле. Построена функция Грина изучаемой краевой задачи. Получены равномерные оценки функций Грина рассматриваемых краевых задач. Установлена равносходимость разложений произвольной функции из класса $L_{1}(-1,1)$ по собственным функциям двух дифференциальных операторов второго порядка с инволюцией с краевыми условиями типа Дирихле. Мы используем интегральный метод, основанный на функции Грина дифференциального оператора второго порядка с инволюцией и со спектральным параметром. Как следствие из доказанной теоремы о равносходимости разложений по собственным функциям, мы доказываем базисность в пространстве $L_{2}(-1,1)$ собственных функций спектральной задачи с непрерывным комплекснозначным коэффициентом $q(x).$
-
Асимптотика решения краевой задачи, когда предельное уравнение имеет нерегулярную особую точку, с. 332-340В статье исследуются асимптотические поведения решений сингулярно возмущенных двухточечных краевых задач на отрезке. Объектом исследования является линейное неоднородное обыкновенное дифференциальное уравнение второго порядка с малым параметром при старшей производной искомой функций. Особенности рассматриваемых задач состоят в том, что малый параметр находится при старшей производной искомой функций и соответствующее невозмущенное дифференциальное уравнение первого порядка имеет иррегулярную особую точку на левом конце отрезка. На концах отрезка ставятся краевые условия. Рассматриваются две задачи, в одном функция перед первой производной искомой функций не положительна на рассматриваемом отрезке, а во втором не отрицательна. Асимптотические разложения задач строятся классическим методом пограничных функций Вишика-Люстерника-Васильевой-Иманалиева. Однако напрямую этот метод применить невозможно, так как внешнее решение имеет особенность. Мы сначала убираем эту особенность из внешнего решения, затем применяем метод пограничных функций. Построенные асимптотические разложения обоснованы с помощью принципа максимума, т.е. получены оценки для остаточных функций.
-
В работе исследована обратная краевая задача с неизвестным коэффициентом, зависящим от времени, для одного уравнения Буссинеска четвертого порядка с нелокальными интегральными по времени условиями второго рода. Дается определение классического решения поставленной задачи. Суть задачи состоит в том, что требуется вместе с решением определить неизвестный коэффициент. Задача рассматривается в прямоугольной области. При решении исходной обратной краевой задачи осуществляется переход от исходной обратной задачи к некоторой вспомогательной обратной задаче. С помощью сжатых отображений доказываются существование и единственность решения вспомогательной задачи. Затем вновь производится переход к исходной обратной задаче, в результате делается вывод о разрешимости исходной обратной задачи.
-
Изучается задача о малых движениях идеальной стратифицированной жидкости со свободной поверхностью, частично покрытой упругим льдом. Упругий лед моделируется упругой пластиной. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Начальная краевая задача сведена к задаче Коши для дифференциального уравнения второго порядка в некотором гильбертовом пространстве. После подробного изучения свойств операторных коэффициентов, отвечающих возникшей системе уравнений, доказывается теорема о сильной разрешимости полученной задачи Коши на конечном интервале времени. На этой основе доказана также теорема о существовании решения и исходной начально-краевой задачи.
-
В статье предложена численная методика, основанная на методе конечных разностей, для приближенного решения нелокальной краевой задачи второго порядка для обыкновенных дифференциальных уравнений. Ясно, что мост, построенный с двумя опорными точками в каждой конечной точке, приводит к стандартному двухточечному локальному граничному условию, а мост, созданный с помощью многоточечных опор, соответствует многоточечному граничному условию. В то же время, если нелокальные граничные условия могут быть установлены вблизи каждой конечной точки многоточечного опорного моста, возникает двухточечное нелокальное граничное условие. Результаты расчетов для нелинейной модельной задачи представлены для проверки предложенной идеи. Проанализировано влияние изменения параметров на сходимость предложенного метода.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.