Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'крайняя точка':
Найдено статей: 8
  1. Для вещественнозначных функций $f$, заданных на подмножествах вещественных линейных пространств, введены понятия крайних подаргументов и крайних надаргументов, а также понятия естественных выпуклой $\check{f}$ и вогнутой $\hat{f}$ оболочек. Показано, что для любой строго выпуклой функции $g$ любая точка глобального максимума функции $f+g$ является крайним подаргументом для функции $f$. Аналогичный результат получен для функций вида $f/v + g$. На основе этих результатов предложен метод, облегчающий поиск глобальных экстремумов функций в некоторых случаях. Доказано, что при определенных условиях функции $f/v+g$ и $\hat{f}/v+g$ имеют одинаковые глобальные максимумы и одинаковые точки глобального максимума. Приведены необходимые и достаточные условия естественности выпуклой оболочки функции. Указано достаточное условие того, что при сужении области определения $f$, значения вогнутой оболочки $\hat{f}$ на суженной области не меняются. Найдены крайние под- и надаргументы для непрерывной нигде не дифференцируемой функции Кобаяши-Грея-Такаги $K(x)$ на отрезке $[0;1]$. Кроме того, на отрезке $[0;1]$ вычислены глобальные экстремумы функции $K(x)/\cos{x}$ и глобальный максимум функции $K(x)-\sqrt{x(1-x)}$. Работа снабжена примерами и проиллюстрирована графиками.

  2. Атамуратов А.А., Расулов К.К.
    О теореме Шимоды, с. 17-31

    Настоящая работа посвящена теореме Шимоды о голоморфности функции $f(z,w)$, которая является голоморфной по $w\in V$ при фиксированном $z\in U$ и голоморфна по $z\in U$ при фиксированном $w\in E$, где $E\subset V$ - счетное множество, по крайней мере, с одной предельной точкой в $V$. Шимода доказывает, что в этом случае $f(z,w)$ голоморфно в $U\times V$, за исключением нигде не плотного замкнутого подмножества $U\times V.$ Рассматривается обратная задача и доказывается, что для любого заранее заданного нигде не плотного замкнутого подмножества $S\subset U$ существует голоморфная функция, удовлетворяющая теореме Шимоды на $U\times V\subset {\mathbb C}^{2}$, не голоморфная на $S\times V$. Кроме того, исследованы дополнительные условия, которые влекут за собой пустые множества особенностей в теореме Шимоды. Доказывается обобщение в случае, когда функция имеет переменный радиус голоморфности по одному из направлений.

  3. Изучение фазового перехода является одной из центральных проблем статистической механики. Он происходит, когда для модели существуют по крайней мере две различные меры Гиббса. Известно, что для ферромагнитной модели Поттса с $q$ состояниями при достаточно низких температурах существуют не более $2^{q}-1$ трансляционно-инвариантных расщепленных мер Гиббса. Для непрерывных гамильтонианов меры Гиббса образуют непустое, выпуклое, компактное подмножество в пространстве всех вероятностных мер. Экстремальные меры, которые соответствуют крайним точкам этого множества, определяют чистые фазы. Мы изучаем экстремальность трансляционно-инвариантных расщепленных мер Гиббса для ферромагнитной модели Поттса с $q$ состояниями на дереве Кэли третьего порядка. Мы определяем области, в которых изучаемые трансляционно-инвариантные меры Гиббса для этой модели являются экстремальными или не являются экстремальными. Мы сводим описание мер Гиббса к решению нелинейного функционального уравнения, каждое решение которого соответствует одной предельной мере Гиббса.

  4. Рассматриваются Cr-гладкие (r≥1) диффеоморфизмы многомерного пространства в себя с гиперболической неподвижной точкой и нетрансверсальной гомоклинической к ней точкой. Из работ Ш. Ньюхауса, Л.П. Шильникова, Б.Ф. Иванова и других авторов следует, что при определенном способе касания устойчивого и неустойчивого многообразий окрестность гомоклинической точки может содержать счетное множество устойчивых периодических точек, но по крайней мере один из характеристических показателей у таких точек стремится к нулю с ростом периода. В предлагаемой работе показано, что при определенных условиях, наложенных на характер касания устойчивого и неустойчивого многообразий, в окрестности нетрансверсальной гомоклинической точки лежит бесконечное множество устойчивых периодических точек, характеристические показатели которых отделены от нуля.

  5. Рассматривается линейная стационарная задача преследования с участием группы преследователей и группы убегающих при условиях, что матрица системы является скалярной, среди преследователей имеются как участники, у которых множество допустимых управлений совпадает с множеством допустимых управлений убегающих, так и участники с меньшими возможностями. Множеством значений допустимых управлений убегающих является шар с центром в нуле. Цель группы преследователей состоит в том, чтобы «переловить» всех убегающих. Цель группы убегающих - помешать этому, то есть предоставить возможность по крайней мере одному из убегающих уклониться от встречи. Преследователи и убегающие используют кусочно-программные стратегии. Показано, что если в игре, в которой все участники обладают равными возможностями, происходит уклонение от встречи хотя бы одного убегающего на бесконечном промежутке времени, то добавление любого числа преследователей с меньшими возможностями приводит к тому, что хотя бы один из убегающих уклонится от встречи на любом конечном промежутке времени.

  6. В настоящее время в рамках управления воздушным движением крайне важной является задача формирования оптимального безопасного расписания прибытия самолетов в точку слияния воздушных трасс. Безопасность результирующей очереди обеспечивается наличием безопасного временнóго интервала между соседними прибытиями в точку слияния. Изменение момента прибытия может обеспечиваться изменением скорости движения самолета и/или использованием схем, удлиняющих или укорачивающих его траекторию. Оптимальность результирующей очереди рассматривается с точки зрения дополнительных требований: минимизации отклонения назначенных моментов прибытия от номинальных, минимизации количества изменений порядка самолетов в очереди, минимизации расхода топлива и т.д. Минимизируемый критерий оптимальности, отражающий эти требования, часто выбирается как сумма индивидуальных штрафов каждому судну за отклонение назначенного момента прибытия от номинального. Функция индивидуального штрафа почти во всех статьях рассматривается либо как модуль отклонения, либо как функция, похожая на модуль, но с различными наклонами ветвей, что приводит к разному штрафу за задержку и ускорение. В целом, задача может быть разделена на две: одна связана с поиском оптимального порядка прибытия судов, вторая — с выбором оптимальных моментов прибытия при заданном порядке. Последняя подзадача достаточно просто решается, поскольку чаще всего может быть формализована как задача линейного программирования. Однако первая решается значительно сложнее, для ее решения применяются разнообразные методы — от эвристических и генетических процедур до подходов смешанного целочисленного линейного программирования. В статье предлагаются условия на параметры задачи, достаточные для того, чтобы порядок оптимальных моментов прибытия самолетов в точку слияния совпадал с порядком номинальных моментов. Это позволяет исключить первую подзадачу из решения всей задачи.

  7. Получены условия, позволяющие оценивать относительную частоту пребывания множества достижимости управляемой системы в некотором заранее заданном множестве. Если относительная частота пребывания в этом множестве равна единице, то данное множество называется статистически инвариантным. Получены также условия, при которых заданное множество статистически слабо инвариантно относительно управляемой системы, то есть для каждой начальной точки из этого множества по крайней мере одно решение управляемой системы, статистически инвариантно. Предполагается, что образы правой части дифференциального включения, отвечающего данной управляемой системе, замкнуты, но не обязательно компактны. Основные утверждения формулируются в терминах функций Ляпунова, метрики Хаусдорфа–Бебутова и динамической системы сдвигов, сопутствующей правой части дифференциального включения.

  8. Рассмотрен класс задач управления по быстродействию в трехмерном пространстве с шаровой вектограммой скоростей. В качестве целевого множества выбрана гладкая регулярная кривая $\Gamma.$ Выделены псевдовершины — характеристические точки на $\Gamma,$ отвечающие за возникновение сингулярности у функции оптимального результата. Выявлены характерные особенности структуры сингулярного множества, относящегося к семейству биссектрис. Найдено аналитическое представление для крайних точек биссектрисы, соответствующих фиксированной псевдовершине. В качестве иллюстрации эффективности развиваемых методов решения негладких динамических задач приведен пример численно-аналитического построения разрешающих конструкций задачи управления по быстродействию.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref