Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'локальная оптимальность по быстродействию':
Найдено статей: 3
  1. Предмет изучения - псевдовершины краевого множества, необходимые для аналитического и численного конструирования сингулярных ветвей обобщенного (минимаксного) решения задачи Дирихле для уравнения типа эйконала. Рассмотрен случай переменной гладкости границы краевого множества, при котором порядок гладкости в точках рассмотрения понижается до минимально возможного значения - до единицы. Получены необходимые условия существования псевдовершин, выраженные в терминах односторонних частичных пределов дифференциальных соотношений, зависящих от свойств локальных диффеоморфизмов, которые определяют эти точки. Приведен пример, иллюстрирующий приложения полученных результатов при решении задачи управления по быстродействию на плоскости.

  2. Предлагается численный метод решения задачи оптимального быстродействия для линейных систем с постоянным запаздыванием. Доказано, что этот итерационный метод сходится за конечное число итераций к ε-оптимальному решению. Под ε-оптимальным решением понимается пара {T, u}, где u = u(t), t ∈ [0, T] допустимое управление, под действием которого управляемая система переходит в ε-окрестность начала координат за время T ≤ Tmin, Tmin время оптимального по быстродействию перехода в начало координат. Достаточно общая задача быстродействия с запаздыванием исследована в работе [Васильев Ф.П., Иванов Р.П. О приближенном решении задачи быстродействия с запаздыванием //Журнал вычислительной математики и математической физики. 1970. Т. 10, № 5. С. 1124–1140.], предложено ее приближенное решение и обсуждены вычислительные аспекты. Однако для решения вспомогательных задач оптимального управления, возникающих при применении предлагаемых способов решения задачи быстродействия, предлагается использовать методы градиентного и ньютоновского типов, которые имеют локальную сходимость. Предложенный нами метод имеет глобальную сходимость.

  3. Рассматривается задача об оптимальном управлении по быстродействию. Обсуждаются достаточные условия локальной оптимальности, связанные с необходимыми условиями принципа максимума Понтрягина при условии полной управляемости системы в вариациях. Задача обсуждается для системы, описываемой векторным дифференциальным уравнением, обыкновенным или с последействием. В случае конфликтного управления обсуждается задача оптимального управления по критерию минимакса-максимина времени выхода системы в заданное состояние. Рассматривается модельный пример и обсуждается соответствующий вычислительный эксперимент.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref