Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Для класса динамических систем, включающего в себя уравнения колебаний упругой балки на упругом основании, автономные системы обыкновенных дифференциальных уравнений, системы гидродинамического типа и др., изложена процедура приближенного вычисления амплитуд периодических решений, бифурцирующих из точек покоя при наличии резонансов.
-
О типе мероморфной функции конечного порядка, с. 212-224Пусть $f(z)$ — мероморфная функция на комплексной плоскости конечного порядка $\rho>0$, $\rho(r)$ — уточненный порядок в смысле Бутру такой, что $0<\alpha=\liminf\limits_{r\to\infty}\rho(r)\leqslant\limsup\limits_{r\to\infty}\rho(r)=\rho<\infty$. Если $[\alpha]<\alpha\leqslant\rho<[\alpha]+1$, то типы $T(r,f)$ и $|N|(r,f)$ относительно $\rho(r)$ совпадают. Если между $\alpha$ и $\rho$ есть целые числа, то полученный критерий формулируется в терминах верхней плотности нулей и полюсов функции $f$ и их аргументной симметрии.
-
В статье рассматривается метод поиска и анализа текстурных компонент по прямым полюсным фигурам, с учетом симметрии кубического кристалла и образца. Алгоритм основан на представлении плоскостей отражения полярным комплексом векторов. Поиск ориентации происходит путем перемещения оси полярного комплекса по единичной полусфере, с последующим вращением полярного комплекса относительно этой оси. Далее определяется положение стереографических проекций векторов полярного комплекса на дискретной прямой полюсной фигуре. Ориентация считается найденной, если проекции по крайней мере трех векторов полярного комплекса попадают в область с ненулевой интенсивностью. Для каждой ориентации вычисляется вектор Родрига. Кроме того, определяются углы Эйлера и индексы Миллера. Текстурные компоненты выделяются в интерактивном режиме путем кластеризации данных в пространстве Родрига. С помощью ковариационной матрицы определяются собственные значения и векторы, характеризующие пространственное рассеяние текстурных компонент. В работе исследуются полюсные фигуры алюминиевой фольги после различных текстурных преобразований. Найденные текстурные компоненты представлены в пространстве Родрига.
-
В данной работе методом вложения строится классификация феноменологически симметричных геометрий двух множеств ранга $(n+1,m)$ при $n\geqslant2$ и $m\geqslant 3$. Суть этого метода состоит в нахождении метрических функций феноменологически симметричных геометрий двух множеств высокого ранга по известной феноменологически симметричной геометрии двух множеств ранга на единицу ниже. Так, по метрической функции феноменологически симметричной геометрии двух множеств ранга $(n+1,n)$ находится метрическая функция феноменологически симметричной геометрии двух множеств ранга $(n+1,n+1)$, по которой потом находится метрическая функция геометрии ранга $(n+1,n+2)$. Затем доказывается, что вложение феноменологически симметричной геометрии двух множеств ранга $(n+1,n+2)$ в феноменологически симметричную геометрию ранга $(n+1,n+3)$ отсутствует. С учетом симметрии метрической функции относительно первого и второго аргументов в конце работы методом математической индукции завершается классификация. Для решения поставленной задачи записываются специальные функциональные уравнения, которые сводятся к хорошо известным дифференциальным уравнениям.
-
Группой симметрии данного дифференциального уравнения называется группа преобразований, которые переводят решения уравнения в решения. Если известны инфинитезимальные образующие группы симметрий, то мы можем находить инвариантные решения относительно этой группы. Для систем уравнений с частными производным группу симметрий можно использовать, чтобы явно найти частные типы решений, которые сами являются инвариантными относительно некоторой подгруппы полной группы симметрий системы. Например, решения уравнения с частными производными от двух независимых переменных, инвариантные относительно заданной однопараметрической группы симметрий, находятся решением системы обыкновенных дифференциальных уравнений. Класс инвариантных относительно группы решений включает в себя точные решения, имеющие непосредственное математическое или физическое значения. В работе с помощью известных инфинитезимальных образующих некоторых групп симметрий двумерного уравнения теплопроводности найдены решения, инвариантные относительно этих групп. Сначала рассматривается двумерное уравнение теплопроводности с источником тепловыделения (с источником теплопоглощения), которое описывает процесс распространения тепла на плоской области. Для этого случая найдено семейство точных решений, зависящее от произвольных постоянных. Затем найдены инвариантные решения уравнения теплопроводности без источника тепла и без источника поглощения.
-
Рассматривается система уравнений Грина-Нагди, описывающая распространение длинных волн на поверхности жидкости. Построены продолжения операторов алгебры симметрии уравнений Грина-Нагди, вычислены ее дифференциальные инварианты и операторы инвариантного дифференцирования. Доказана теорема о базисе дифференциальных инвариантов алгебры симметрии уравнений Грина-Нагди. Кроме того, описаны связи между дифференциальными инвариантами, порождаемые операторами инвариантного дифференцирования и самими дифференциальными уравнениями. Для построения в дальнейшем дифференциально инвариантных решений необходимо исследование условий совместности полученной переопределенной системы.
-
Предмет изучения - псевдовершины краевого множества, необходимые для аналитического и численного конструирования сингулярных ветвей обобщенного (минимаксного) решения задачи Дирихле для уравнения типа эйконала. Рассмотрен случай переменной гладкости границы краевого множества, при котором порядок гладкости в точках рассмотрения понижается до минимально возможного значения - до единицы. Получены необходимые условия существования псевдовершин, выраженные в терминах односторонних частичных пределов дифференциальных соотношений, зависящих от свойств локальных диффеоморфизмов, которые определяют эти точки. Приведен пример, иллюстрирующий приложения полученных результатов при решении задачи управления по быстродействию на плоскости.
-
Проведено численное исследование процесса формирования сферического ударного импульса в газе и его взаимодействие с защитным барьером из водной пены, сопровождающееся образованием вихревых течений. Поставленная задача решена для случая двумерной осевой симметрии с использованием двухфазной газожидкостной модели, базирующейся на законах сохранения массы, импульса и энергии смеси и уравнении динамики объемного содержания фаз. Численное решение реализовано на базе открытого пакета OpenFOAM с применением стандартного решателя compressibleMultiphaseInterFoam, модифицированного в соответствии с условиями задачи и модельными представлениями. Дискретизация системы уравнений в выбранном солвере проведена методом контрольных объемов с применением вычислительного алгоритма Pimple. Показано значительное снижение интенсивности ударной волны при ее взаимодействии с преградой из водной пены и выявлены причины, приводящие к вихреобразованию в газовой области. Оценена достоверность полученных результатов сравнением с решением аналогичной задачи другими численными методами.
-
В данной работе исследуется качение сферического волчка с осесимметричным распределением масс по гладкой горизонтальной плоскости, совершающей периодические вертикальные колебания. Для рассматриваемой системы получены уравнения движения и законы сохранения. Показано, что система допускает два положения равновесия, соответствующих равномерным вращениям волчка относительно вертикально расположенной оси симметрии. Положение равновесия устойчиво, когда центр масс расположен ниже геометрического центра и неустойчиво, если центр масс расположен выше него. Проведена редукция уравнений движения к системе с полутора степенями свободы. Рассматриваемая редуцированная система представлена в виде малого возмущения задачи о движении волчка Лагранжа. При помощи метода Мельникова показано, что устойчивая и неустойчивая ветви сепаратрисы трансверсально пересекаются между собой, что говорит о неинтегрируемости рассматриваемой задачи. Приведены результаты компьютерного моделирования динамики волчка вблизи неустойчивого положения равновесия.
-
Структурная устойчивость логарифмических спиралей в задачах управления с особой экстремалью второго порядка, с. 117-128Исследуется структурная устойчивость логарифмических спиралей в обобщении задачи Фуллера на случай управления из круга. Рассматривается малое возмущение относительно действия группы симметрий невозмущенной задачи. Для возмущенной задачи показано, что в окрестности особой экстремали второго порядка сохраняются экстремали в виде логарифмических спиралей. Построенные экстремали приходят на особую экстремаль за конечное время, при этом управления совершают бесконечное число оборотов вдоль окружности.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.