Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'быстродействие':
Найдено статей: 11
  1. Кандоба И.Н., Козьмин И.В., Новиков Д.А.
    Численное исследование одной нелинейной задачи быстродействия, с. 429-444

    Обсуждаются вопросы построения допустимых управлений в одной задаче оптимального управления нелинейной динамической системой при наличии ограничений на ее текущее фазовое состояние. Рассматриваемая динамическая система описывает управляемое движение ракеты-носителя от точки старта до момента ее выхода на заданную околоземную эллиптическую орбиту. Задача заключается в построении программного управления, которое обеспечивает выведение ракетой-носителем на орбиту полезной нагрузки максимальной массы и выполнение дополнительных ограничений на текущее фазовое состояние системы. Дополнительные ограничения обусловлены необходимостью учитывать величины скоростного напора, углов атаки и скольжения при движении ракеты в плотных слоях атмосферы и осуществлять падение ее отделяемых частей в заданные районы на земной поверхности. Для ракет-носителей ряда классов такая задача равносильна нелинейной задаче быстродействия с фазовыми ограничениями. Предлагаются и численно исследуются два алгоритма построения в этой задаче допустимых управлений, обеспечивающих выполнение указанных дополнительных фазовых ограничений. Методологическую основу одного алгоритма составляет применение некоторого прогнозирующего управления, которое априори строится в задаче быстродействия без учета в ней дополнительных ограничений, а другого - использование специальных режимов управления. Приводятся результаты численного моделирования.

  2. Для двухпараметрического семейства функций введено понятие TA-системы, которое является обобщением известного понятия T-системы для однопараметрического семейства функций. Сформулирован и доказан ряд утверждений о системах функций, образующих TA-систему. Построенная теория TA-систем применена для изучения линейных нестационарных управляемых систем с многомерным управлением. Для указанных выше систем решена задача о быстродействии в нуль при условии, что начальная точка движения находится внутри множества докритичности.

  3. Излагаются элементы численно-аналитического подхода к построению решения для одного класса задач быстродействия на плоскости. Предложены алгоритмы конструирования множества негладкости функции оптимального результата. Выявлена структура множеств Лебега этой функции. Обоснованы формулы для точек прекращения сингулярных кривых. Приведены результаты моделирования решений задач быстродействия для случая, когда целевое множество является невыпуклым и имеет кусочно-гладкую границу. Работа продолжает исследование обобщенных решений задач Дирихле для уравнений типа Гамильтона-Якоби.

  4. Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из основных задач математической теории управления - задача о сближении фазового вектора управляемой системы с компактным целевым множеством в фазовом пространстве в фиксированный момент времени. В этой работе в качестве целевого множества выбрано множество Лебега скалярной липшицевой функции, определенной на фазовом пространстве. Упомянутая задача о сближении тесно связана с многими важными и ключевыми задачами теории управления, в частности с задачей об оптимальном по быстродействию приведении управляемой системы на целевое множество. Из-за сложности задачи о сближении для нетривиальных управляемых систем аналитическое представление решений невозможно даже для относительно простых управляемых систем. Поэтому в настоящей работе мы изучаем прежде всего вопросы, связанные с конструированием приближенного решения задачи о сближении. Конструирование приближенного решения тем методом, который изложен в работе, связано прежде всего с конструированием интегральной воронки управляемой системы, представленной в так называемом «обратном» времени. К настоящему времени известно несколько алгоритмов конструирования разрешающего программного управления в задаче о сближении. Здесь представлен алгоритм построения управления, основанный на максимальном притяжении движения системы к множеству разрешимости задачи о сближении. В работе приведены примеры.

  5. Предмет изучения - псевдовершины краевого множества, необходимые для аналитического и численного конструирования сингулярных ветвей обобщенного (минимаксного) решения задачи Дирихле для уравнения типа эйконала. Рассмотрен случай переменной гладкости границы краевого множества, при котором порядок гладкости в точках рассмотрения понижается до минимально возможного значения - до единицы. Получены необходимые условия существования псевдовершин, выраженные в терминах односторонних частичных пределов дифференциальных соотношений, зависящих от свойств локальных диффеоморфизмов, которые определяют эти точки. Приведен пример, иллюстрирующий приложения полученных результатов при решении задачи управления по быстродействию на плоскости.

  6. Рассматривается стационарная управляемая система в евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из центральных в теории управления задач  задача о сближении управляемой системы с множеством в фазовом пространстве системы в фиксированный (конечный) момент времени. Эта задача тесно связана с многими ключевыми задачами теории управления, например, с задачей об оптимальном быстродействии. В связи с этим представляется важным иметь эффективные алгоритмы построения решений этой задачи. Из-за сложности задачи невозможно аналитическое описание решений даже в относительно простых случаях. Построение приближенных решений задачи связано с конструированием интегральной воронки управляемой системы, но обращенной во времени. В работе приводится один алгоритм приближенного построения интегральной воронки, представляющей собой конечную аппроксимацию множества разрешимости задачи о сближении. В работе также описана процедура приближенного вычисления разрешающего управления, которая включает в себя запоминание локальных управлений. Приводится иллюстрирующий пример механической управляемой системы.

  7. Предлагается численный метод решения задачи оптимального быстродействия для линейных систем с постоянным запаздыванием. Доказано, что этот итерационный метод сходится за конечное число итераций к ε-оптимальному решению. Под ε-оптимальным решением понимается пара {T, u}, где u = u(t), t ∈ [0, T] допустимое управление, под действием которого управляемая система переходит в ε-окрестность начала координат за время T ≤ Tmin, Tmin время оптимального по быстродействию перехода в начало координат. Достаточно общая задача быстродействия с запаздыванием исследована в работе [Васильев Ф.П., Иванов Р.П. О приближенном решении задачи быстродействия с запаздыванием //Журнал вычислительной математики и математической физики. 1970. Т. 10, № 5. С. 1124–1140.], предложено ее приближенное решение и обсуждены вычислительные аспекты. Однако для решения вспомогательных задач оптимального управления, возникающих при применении предлагаемых способов решения задачи быстродействия, предлагается использовать методы градиентного и ньютоновского типов, которые имеют локальную сходимость. Предложенный нами метод имеет глобальную сходимость.

  8. Рассмотрен класс задач управления по быстродействию в трехмерном пространстве с шаровой вектограммой скоростей. В качестве целевого множества выбрана гладкая регулярная кривая $\Gamma.$ Выделены псевдовершины — характеристические точки на $\Gamma,$ отвечающие за возникновение сингулярности у функции оптимального результата. Выявлены характерные особенности структуры сингулярного множества, относящегося к семейству биссектрис. Найдено аналитическое представление для крайних точек биссектрисы, соответствующих фиксированной псевдовершине. В качестве иллюстрации эффективности развиваемых методов решения негладких динамических задач приведен пример численно-аналитического построения разрешающих конструкций задачи управления по быстродействию.

  9. Рассматривается задача об оптимальном управлении по быстродействию. Обсуждаются достаточные условия локальной оптимальности, связанные с необходимыми условиями принципа максимума Понтрягина при условии полной управляемости системы в вариациях. Задача обсуждается для системы, описываемой векторным дифференциальным уравнением, обыкновенным или с последействием. В случае конфликтного управления обсуждается задача оптимального управления по критерию минимакса-максимина времени выхода системы в заданное состояние. Рассматривается модельный пример и обсуждается соответствующий вычислительный эксперимент.

  10. Пацко В.С., Турова В.Л.
    Игра "шофер-убийца" и ее модификации, с. 105-110

    Приводится обзор работ, связанных с дифференциальной игрой «шофер-убийца».

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref