Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'нормальность':
Найдено статей: 21
  1. В 1976 году Альстер и Пшимусинский построили ненормальное вполне-регулярное сепарабельное топологическое пространство, удовлетворяющее первой аксиоме счетности и имеющее мощность $\aleph_1$. Они также доказали, что в предположении аксиомы Мартина и отрицании континуум-гипотезы нельзя построить подобный пример, который дополнительно кометризуем. Если ослабить условие кометризуемости до субметризуемости, то подобное утверждение доказать нельзя: в данной статье построен пример ненормального вполне-регулярного субметризуемого сепарабельного локально счетного топологического пространства, удовлетворяющего первой аксиоме счетности и имеющего мощность $\aleph_1.$

  2. Бельских Ю.А., Жуковский В.И., Самсонов С.П.
    Альтруистическое равновесие (по Бержу) в модели дуополии Бертрана, с. 27-45

    В 1883 г. французский математик Жозеф Луи Франсуа Бертран (1822-1900) построил модель ценовой конкуренции на олигопольном рынке, на котором фирмы конкурируют между собой, меняя цену продукции. Заметим, что такая модель не «блистала новизной», ибо ровно на 45 лет раньше тоже французский экономист, философ и математик Антуан Огюст Курно (1801-1877) в «Исследовании математических принципов теории богатства» в разделе 7 «О конкуренции производителей» рассмотрел частный случай олигополии – дуополию (при которой участвуют только два производителя). В ней уже математическая модель основывалась на том, что оба производителя выбирают объем поставляемой продукции, цена же варьируется в результате равновесия между спросом и предложением. Рыночная цена устанавливается на том же уровне, на котором покупателями будет предъявлен спрос на весь «выкинутый на рынок» товар. Однако Бертран основывался на более естественном поведении продавца, именно на выборе им цены, а не количества «выброшенного» на рынок товара, как у Курно.
    Заметим, что покупатели обычно рассматривают продукцию одинакового назначения разных фирм как разные товары. Поэтому будем считать, что на рынок каждая фирма выходит со своим товаром, причем все эти товары взаимозаменяемы.
    Математическая модель дуополии Бертрана представлена бескоалиционной игрой двух лиц в нормальной форме. Для нее формализуется два вида равновесия: по Бержу (РБ) и по Нэшу (РН).
    Предполагается, что:
    $a)$ максимальная цена и себестоимость у обоих игроков совпадают (что естественно для рынка одного товара);
    $b)$ запрещена коалиция из двух игроков (в этом – бескоалиционный характер игры);
    $c)$ цена больше себестоимости, ибо в противном случае продавцам (игрокам) вряд ли стоит появляться на рынке.
    В предлагаемой читателю статье для почти всех значений параметров модели установлен конструктивный способ выбора конкретного равновесия (РБ или РН) в зависимости от установившейся на рынке максимальной цены продукта.

  3. Настоящая работа посвящена исследованию асимптотических свойств числа серий в последовательности дискретных случайных величин, управляемых цепью Маркова с конечным числом состояний. Состояние цепи на каждом шаге определяет закон распределения знаков в управляемой последовательности на этом шаге. Такая случайная последовательность представляет собой модель скрытой марковской цепи. При помощи метода Чена-Стена получена оценка расстояния по вариации между распределением числа серий длины не меньше заданной в случайной последовательности, управляемой цепью Маркова, и сопровождающим распределением Пуассона. Для ее вывода сначала рассматривалась последовательность из независимых неоднородных полиномиальных случайных величин, а затем использован прием, позволяющий получить оценку расстояния по вариации между смешанным пуассоновским распределением и пуассоновским распределением с параметром, равным среднему числу серий длины не меньше заданной. Эта оценка строится на основе дисперсии параметра смешанного пуассоновского распределения и выведенной ранее оценки для расстояния по вариации для полиномиальной схемы. Отдельно рассмотрен случай стационарной цепи Маркова. При помощи полученных оценок доказаны пуассоновская и нормальная предельные теоремы для числа серий длины не меньше заданной, а также найдено предельное распределение для наибольшей длины серии в управляемой случайной последовательности.

  4. Для задачи оптимального управления линейным параболическим уравнением с распределенным, начальным и граничным управлениями и с операторным полуфазовым ограничением типа равенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собой регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации. Приводятся результаты модельных расчетов при решении конкретной задачи оптимального управления, иллюстрирующих работу алгоритма, основанного на регляризованном итерационном принципе максимума Понтрягина. В качестве конкретной оптимизационной задачи рассмотрена задача поиска минимальной по норме тройки управлений при операторном ограничении-равенстве в финальный момент времени, или, другими словами, обратная задача финального наблюдения по поиску ее нормального решения.

  5. Рассматривается обобщенное уравнение Курамото-Сивашинского в случае, когда неизвестная функция зависит от двух пространственных переменных. Такой вариант данного уравнения используется в качестве математической модели формирования неоднородного рельефа на поверхности полупроводников под воздействием потока ионов. В работе данное уравнение изучается вместе с однородными краевыми условиями Неймана в трех областях: прямоугольнике, квадрате и равнобедренном треугольнике. Изучен вопрос о локальных бифуркациях при смене устойчивости пространственно однородными состояниями равновесия. Показано, что в данных трех краевых задачах реализуются послекритические бифуркации и в их результате в каждой из трех изучаемых краевых задач бифурцируют пространственно неоднородные решения. Для них получены асимптотические формулы. Выявлена зависимость характера бифуркаций от выбора, геометрии области. В частности, определен вид зависимости от пространственных переменных. Изучен вопрос об устойчивости, в смысле определения А.М. Ляпунова, найденных пространственно неоднородных решений. Анализ бифуркационных задач использовал известные методы теории динамических систем с бесконечномерным фазовым пространством: интегральных (инвариантных) многообразий, нормальных форм Пуанкаре-Дюлака в сочетании с асимптотическими методами.

  6. Рассматривается структурированная популяция, особи которой разделены на возрастные или типические группы, заданная нормальной автономной системой разностных уравнений. Для данной популяции исследуется задача оптимального сбора возобновляемого ресурса на конечном или бесконечном промежутках времени. Для популяции, эксплуатируемой на конечном промежутке, описана стратегия промысла, при которой достигается наибольшее значение общей стоимости изымаемого ресурса. Если же добыча ресурса происходит на неограниченном промежутке, то определяется средняя временная выгода и вычисляется ее значение при стационарном режиме эксплуатации; рассматриваются случаи, когда система имеет асимптотически устойчивую неподвижную точку или устойчивый цикл. Также описана стратегия промысла, которая является оптимальной среди других способов эксплуатации; показано, что при определенных условиях она является стационарной или отличается от стационарной только значением управления в начальный момент времени. Результаты работы проиллюстрированы на примере двухвозрастной эксплуатируемой популяции, в которой промысловому изъятию подвержены особи или младшей, или обеих возрастных групп.

  7. В настоящей работе проведено исследование модели деформаций системы из $n$ стилтьесовских струн, расположенных вдоль геометрического графа-звезды, с нелинейным условием в узле. Соответствующая граничная задача имеет вид $$ \left\{\begin{array}{lll} -\left(p_iu_i^\prime\right)(x)+\displaystyle{\int_{0}^{x}}u_i\,dQ_i=F_i(x)-F_i(+0)-(p_iu_i')(+0),\quad i=1,2, \ldots, n,\\ \sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0),\\ u_1(0)=u_2(0)=\ldots=u_n(0)=u(0),\\ (p_iu_i')(l_i-0)+u_i(l_i)\Delta Q_i(l_i)=\Delta F_i(l_i),\quad i=1,2,\ldots, n. \end{array} \right. $$ Здесь функции $u_i(x)$ определяют деформации каждой из струн; $F_i(x)$ описывают распределение внешней нагрузки; $p_i(x)$ характеризуют упругость струн; $Q_i(x)$ описывают упругую реакцию внешней среды. Скачок $\Delta F_i(l_i)$ равняется сосредоточенной в точке $l_i$ внешней силе; скачок $\Delta Q_i(l_i)$ совпадает с жесткостью упругой опоры (пружины), прикрепленной к точке $l_i$. Условие $\sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0)$ возникает за счет наличия в узле ограничителя, представленного отрезком $[-m,m]$, на перемещение струн под воздействием внешней нагрузки, то есть предполагается, что $|u(0)|\leq m$. Здесь через $N_{[-m,m]}u(0)$ обозначен нормальный конус к $[-m,m]$ в точке $u(0)$. В работе проведен вариационный вывод модели; доказаны теоремы существования и единственности решения; проанализированы критические нагрузки, при которых происходит соприкосновение струн с ограничителем; приведена явная формула представления решения.

  8. Жуковский В.И., Жуковская Л.В., Кудрявцев К.Н., Ларбани М.
    Строгие коалиционные равновесия в играх при неопределенности, с. 189-207

    В статье для игр в нормальной формой при интервальной неопределенности вводится концепция сильного коалиционного равновесия. Эта концепция основана на синтезе трех понятий: индивидуальной рациональности, коллективной рациональности для игр в нормальной форме без побочных платежей и коалиционной рациональности. Для простоты изложения, сильное коалиционное равновесие рассматривается для игр 4 лиц при неопределенности. Достаточные условия существования сильного коалиционного равновесия в чистых стратегиях устанавливаются с помощью седловой точки специального вида свертки Гермейра. Наконец, следуя подходу Бореля, Неймана и Нэша, доказана теорема существования сильного коалиционного равновесия в смешанных стратегиях при стандартных для теории игр условиях (компактность и выпуклость множеств стратегий игроков, компактность множества неопределенностей и непрерывность функций выигрыша).

  9. Рассматривается одна из версий обобщенного вариационного уравнения Гинзбурга-Ландау, дополненная периодическими краевыми условиями. Для такой краевой задачи изучен вопрос о существовании, устойчивости и локальных бифуркациях одномодовых состояний равновесия. Показано, что в случае близком к критическому трехкратного нулевого собственного значения в задаче об устойчивости одномодовых пространственно неоднородных состояний равновесия реализуются докритические бифуркации двумерных инвариантных торов, заполненных пространственно неоднородными состояниями равновесия. Анализ поставленной задачи опирается на такие методы теории бесконечномерных динамических систем как теория инвариантных многообразий и аппарат нормальных форм. Для решений, формирующих инвариантные торы, получены асимптотические формулы.

  10. На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации нормальной производной потенциала простого слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho =(r^{2} -d^{2} )^{1/2} $, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^{5}$, а также на самой границе. Также доказано, что на границе аппроксимации по аналогии с точной функцией терпят разрыв, величина которого пропорциональна значениям интерполированной функции плотности, но могут быть доопределены на границе до функций, непрерывных или на замкнутой внутренней, или на замкнутой внешней приграничной области. Теоретические выводы о равномерной сходимости подтверждены результатами вычисления нормальной производной вблизи границы единичного круга.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref