Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Для класса динамических систем, включающего в себя уравнения колебаний упругой балки на упругом основании, автономные системы обыкновенных дифференциальных уравнений, системы гидродинамического типа и др., изложена процедура приближенного вычисления амплитуд периодических решений, бифурцирующих из точек покоя при наличии резонансов.
-
Для билинейной управляемой системы с периодическими коэффициентами получены достаточные условия равномерной глобальной асимптотической стабилизации нулевого решения. Доказательство основано на применении теоремы Красовского об асимптотической устойчивости в целом нулевого решения для периодических систем. Стабилизирующее управление построено по принципу обратной связи. Оно имеет вид квадратичной формы от фазовой переменной и является периодическим по времени.
-
Бифуркации в системе Рэлея с диффузией, с. 499-514Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.
-
Рассматривается динамическая система сдвигов в пространстве ℜ непрерывных функций, принимающих значения в полном метрическом пространстве (clos(Rn), ρcl) непустых замкнутых подмножеств в Rn. Расстояние между функциями в этом пространстве определяется с помощью аналога метрики Бебутова в пространстве вещественных функций, определенных и непрерывных на всей числовой оси. Показано, что для компактности замыкания траектории точки в ℜ достаточно, чтобы исходная функция была ограничена и равномерно непрерывна в метрике ρcl. Как следствие, доказано, что замыкание траектории рекуррентного движения или траектории почти периодического движения в ℜ компактно.
-
Доказано, что линейная управляемая система $$ \dot x=A(t)x+B(t)u, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \quad u\in\mathbb{R}^m, \qquad\qquad (1) $$ с коэффициентами в форме Хессенберга при достаточно широких условиях на коэффициенты обладает свойством равномерной полной управляемости в смысле Калмана. Показана существенность для некоторых полученных достаточных условий. Установлены следствия для квазидифференциальных уравнений. Исследуется задача о глобальном управлении асимптотическими инвариантами системы $$ \dot x=(A(t)+B(t)U)x, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \qquad \qquad \qquad \qquad (2) $$ полученной замыканием системы $(1)$ обратной связью $u=Ux$. В известных результатах С.Н. Поповой ослабляются условия на коэффициенты. Для системы $(2)$ с коэффициентами в форме Хессенберга, с помощью результатов С.Н. Поповой, получены достаточные условия глобальной скаляризуемости и глобальной управляемости показателей Ляпунова, а в случае когда $A(\cdot)$ и $B(\cdot)$ - $\omega$-периодические и достаточные условия глобальной ляпуновской приводимости.
-
Статистические характеристики множества достижимости и периодические процессы управляемых систем, с. 34-43Изучаются статистические характеристики множества достижимости A(t,σ,X) управляемой системы
ẋ = f(ht,x,u), (t,σ,x,u) ∈ R × Σ × Rn × Rm, (1)
которая параметризована с помощью топологической динамической системы (Σ,ht). Получены оценки снизу таких характеристик, как относительная частота поглощения, верхняя и нижняя относительные частоты поглощения множества достижимости системы (1) заданным множеством M, а также достаточные условия статистической инвариантности множества M относительно управляемой системы. Исследуются условия, которым должна удовлетворять система (1) и множество X, чтобы для заданных σ ∈ Σ и χ0 ∈ (0, 1] относительная частота поглощения множества достижимости A(t,σ,X) системы (1) множеством M была не менее χ0. Результаты работы иллюстрируются на примере управляемой системы, которая описывает периодические процессы в химическом реакторе.
-
Изучаются статистические характеристики множества достижимости управляемой системы, которая параметризована с помощью топологической динамической системы. Получены оценки снизу характеристик, связанных с инвариантностью заданного множества на конечном промежутке времени. Рассматривается также следующая задача, возникающая во многих приложениях. Пусть заданы числа λ0 ∈ (0, 1] и θ > 0. Необходимо найти условия, которым должны удовлетворять управляемая система и множество X, чтобы для заданного σ ∈ Σ относительная частота поглощения множества достижимости A(t,σ,X) системы заданным множеством M на любом отрезке времени длины θ была бы не менее λ0. Отметим, что характеристика θ предполагается заданной в зависимости от прикладной задачи. В частности, если управляемый процесс имеет периодический характер, то θ является периодом данного процесса. Результаты работы иллюстрируются на примерах управляемых систем, которые описывают различные модели роста популяции.
-
Изучаются условия существования рекуррентных и почти периодических решений неавтономного дифференциального включения с параметром, меняющемся в компактном метрическом пространстве. Приводятся соответствующие следствия для обыкновенных дифференциальных включений.
-
Рассматривается линейная нестационарная управляемая система $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R}, \qquad \qquad (1)$$ с кусочно-непрерывными и ограниченными $\omega$-периодическими матрицами коэффициентов $A(\cdot)$ и $B(\cdot)$. Управление в системе (1) строится по принципу линейной обратной связи $u=U(t)x$ с кусочно-непрерывной и ограниченной матричной функцией $U(t)$, $t\in \mathbb{R}$. Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \qquad \qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы (2) означает существование такой матричной функции $U(t)$, $t\in \mathbb{R}$, которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb{Z}$, $\det H_k>0$. Представленная задача решается в предположении равномерной полной управляемости (в смысле Калмана) системы (1), соответствующей замкнутой системе (2), т.е. при условии существования для системы (1) таких чисел $\sigma>0$ и $\alpha_i>0$, $i=\overline{1,4}$, что при всяких числе $t_0\in\mathbb{R}$ и векторе $\xi\in \mathbb{R}^n$ справедливы неравенства $$\alpha_1\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$ $$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$ в которых $X(t,s)$ - матрица Коши линейной системы (1) при $u(t)\equiv0.$ Доказано, что свойство равномерной полной управляемости (в смысле Калмана) периодической системы (1) является необходимым и достаточным условием равномерной глобальной достижимости соответствующей системы (2).
-
Динамика пары точечных вихрей и профиля с параметрическим возбуждением в идеальной жидкости, с. 618-627В данной работе получены уравнения движения пары вихрей и кругового профиля с параметрическим возбуждением, которое возникает за счет периодического движения материальной точки. Подобные плоские задачи, с одной стороны, носят модельный характер и не могут быть использованы для точного количественного описания реальных траекторий системы. С другой стороны, во многих случаях такие модели позволяют получить достаточно точную качественную картину динамики и, вследствие простоты, данные 2D модели позволяют оценить влияние различных параметров. Описаны относительные положения равновесия, обобщающие решения Феппля и коллинеарные конфигурации, в отсутствии движения материальной точки. Показано, что в окрестности относительных равновесий в случае периодического движения центра масс профиля образуется стохастический слой.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.