Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'потенциал':
Найдено статей: 32
  1. Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.

  2. Абдуллаев Б.И., Камолов Х.К.
    Теория потенциала на аналитической поверхности, с. 3-16

    Работа посвящена теории плюрипотенциала на аналитических поверхностях. Теория плюрипотенциала в комплексном пространстве ${\mathbb C}^{n}$, а также на штейновом комплексном многообразии $X\subset{\mathbb C}^{N}$ (без особого множества) изучена достаточно подробно. В этой работе мы предлагаем новую технологию для изучения основных объектов теории потенциала на аналитическом множестве с непустым особым (критическим) множеством.

  3. Исследуются собственные значения и резонансы двухчастичного дискретного оператора Шредингера с малым убывающим потенциалом.

  4. В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.

    В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.

    С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.

    Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.

  5. В работе рассматривается трехмерный оператор Шрёдингера для кристаллической пленки с нелокальным потенциалом, представляющим собой сумму оператора умножения на функцию и оператора ранга два («сепарабельного потенциала»), вида $V=W(x)+\lambda _1(\cdot ,\phi _1)\phi _1+\lambda _2(\cdot ,\phi _2)\phi _2$. Здесь функция $W(x)$ экспоненциально убывает по переменной $x_3$, функции $\phi _1(x)$, $\phi _2(x)$ линейно независимы, блоховские по переменным $x_1, \, x_2$ и экспоненциально убывающие по переменной $x_3$. Потенциалы данного рода возникают в теории псевдопотенциала. Под уровнем оператора Шрёдингера понимается его собственное значение или резонанс. Доказаны существование и единственность уровня данного оператора вблизи нуля, получена его асимптотика.

  6. На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации потенциала двойного слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho=\left(r^2-d^2\right)^{1/2}$, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^5$, а также на самой границе. Также доказано, что использование для вычисления интегралов стандартных квадратурных формул не нарушает равномерной кубической сходимости аппроксимаций прямого значения потенциала на границе класса $C^6$. При некоторых упрощениях доказано, что использование для вычисления интегралов стандартных квадратурных формул влечет отсутствие равномерной сходимости аппроксимаций потенциала внутри области вблизи любой граничной точки. Теоретические выводы подтверждены результатами численного решения задачи Дирихле для уравнения Лапласа в круговой области.

  7. Рассматривается периодический оператор Шредингера ĤA+V в Rn, n≥3. На векторный потенциал A накладываются ограничения, которые, в частности, выполнены, если потенциал A принадлежит классу Соболева Hqloc(Rn;Rn), 2q>n-1, а также в случае, когда Σ ||AN||Cn<+∞, где AN – коэффициенты Фурье потенциала A. Доказана абсолютная непрерывность спектра периодического оператора Шредингера ĤA+V для скалярных потенциалов V из пространства Морри L2,p(Rn), p∈((n-1)/2,n/2], для которых ||ΧBr(x)V||2,pε0 при всех достаточно малых r>0 и всех xRn, где число ε0=ε0(n,p;A)>0 зависит от векторного потенциала A, Br(x) – замкнутый шар радиуса r>0 с центром в точке xRn, ΧΚ – характеристическая функция множества KRn, ||.||2,p
    норма в пространстве L2,p(Rn). Пусть K – элементарная ячейка решетки периодов потенциалов A и V, K* – элементарная ячейка обратной решетки. Оператор ĤA+V  унитарно эквивалентен прямому интегралу операторов ĤA(k)+V, k∈2πK*, действующих в L2(K). Последние операторы рассматриваются также при комплексных векторах k+ik’∈Cn. При доказательстве абсолютной непрерывности спектра оператора ĤA+V используется метод Томаса и оценки резольвенты операторов ĤA(k+ik’)+V при определенным образом выбираемых комплексных векторах k+ik’∈Cn с достаточно большой мнимой частью k’.

  8. Рассматривается дискретный оператор Шредингера на графе, являющийся гамильтонианом электрона, в приближении сильной связи в системе, состоящей из квантовой проволоки и двух внедренных квантовых точек. Данный оператор описывает двухбарьерную резонансную наноструктуру, причем один из барьеров представляет собой нелокальный потенциал. Описан существенный и абсолютно непрерывный спектр оператора. Изучается задача рассеяния в стационарной постановке для двух возможных направлений распространения частицы. Найдены условия полного отражения и полного прохождения.

  9. На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации нормальной производной потенциала простого слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho =(r^{2} -d^{2} )^{1/2} $, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^{5}$, а также на самой границе. Также доказано, что на границе аппроксимации по аналогии с точной функцией терпят разрыв, величина которого пропорциональна значениям интерполированной функции плотности, но могут быть доопределены на границе до функций, непрерывных или на замкнутой внутренней, или на замкнутой внешней приграничной области. Теоретические выводы о равномерной сходимости подтверждены результатами вычисления нормальной производной вблизи границы единичного круга.

  10. Доказана абсолютная непрерывность спектра многомерного периодического оператора Дирака для некоторых классов разрывных магнитных потенциалов.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref