Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье исследуются свойства функции цены задачи оптимального управления на бесконечном горизонте с неограниченным подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Выводится оценка аппроксимации функции цены в задаче с бесконечным горизонтом значениями функции цены в задачах с удлиняющимся конечным горизонтом. Выявляется структура функции цены через значения стационарной функции цены, зависящей только от фазовой переменной. Дается описание асимптотики роста значений функции цены для функционалов качества различного вида, принятых в экономическом и финансовом моделировании: логарифмических, степенных, экспоненциальных, линейных. Устанавливается свойство непрерывности функции цены и выводятся оценки гёльдеровских параметров непрерывности. Полученные оценки необходимы для разработки сеточных алгоритмов построения функций цены в задачах оптимального управления с бесконечным горизонтом.
-
В статье изучается рост решений однородных и неоднородных комплексных линейных дифференциальных уравнений, коэффициенты которых являются аналитическими функциями в расширенной комплексной плоскости, за исключением конечной особой точки, и имеют конечный логарифмический порядок. Мы обобщаем некоторые предыдущие результаты, которые недавно получили Феттуш и Хамуда.
-
Строго положительная, непрерывная, неограниченная, возрастающая функция $\gamma(r)$ на полуоси $[0,+\infty)$ называется функцией роста. Пусть функция роста $\gamma(r)$ для некоторого $M>0$ и для всех $r>0$ удовлетворяет условию $\gamma(2r)\leq M\gamma(r)$ . В статье рассматривается пространство $JM(\gamma(r))^o$ мероморфных функций вполне регулярного роста в верхней полуплоскости относительно функции роста $\gamma$. Получен критерий принадлежности мероморфной функции $f$ к пространству $JM(\gamma(r))^o$. Введено определение индикатора функции пространства $JM(\gamma(r))^o$. Доказано, что индикатор принадлежит пространству $\mathbf{L}^p[0,\pi]$ для всех $p>1$.
-
Изучается поведение оптимальных решений и функции цены в задачах оптимального управления на бесконечном промежутке времени, возникающих в моделях экономического роста, когда параметр эластичности производственной функции Кобба–Дугласа растет до своего предельного значения, равного единице. Решение задачи строится в рамках принципа максимума Понтрягина, адаптированного к задачам на бесконечном промежутке времени. В предельном случае задача вырождается в линейную с постоянным оптимальным управлением, зависящим от параметров модели. Качественное исследование гамильтоновых систем обнаруживает ряд значительных изменений в поведении решений, таких как отсутствие стационарного положения в предельном случае. Тем не менее, гамильтониан и максимизированный гамильтониан задачи сохраняют свои свойства гладкости по всем переменным и вогнутости по фазовым переменным. Также в работе строится функция цены для обеих задач управления и приводятся результаты численных экспериментов для иллюстрации проведенных исследований.
-
Проведен анализ развития скорости неизотермического роста вершины параболического дендрита от момента образования кристалла до выхода скорости на свое стационарное значение. Для определения временной зависимости скорости роста использовалось условие Гиббса-Томсона для сильно неравновесной кристаллизации химически однокомпонентной жидкости. Показано, что зависимость скорости от переохлаждения имеет экспоненциальный характер. Получена количественная и качественная оценки времени достижения стационарного режима роста дендрита при постоянном значении переохлаждения. Аналитически рассчитанная скорость как функция времени совпадает с численными расчетами.
-
В работе рассматриваются результаты решения задачи стационарного течения вязкой несжимаемой жидкости в плоском канале с обратным уступом и прогреваемой нижней стенкой в широком диапазоне числа Рейнольдса $100\leqslant \text{Re}\leqslant 1000$ и параметра расширения потока $1.11 \leqslant ER \leqslant 10$. Исследование выполнено путем численного интегрирования системы двумерных уравнений Навье-Стокса в переменных «скорость-давление» на равномерных сетках с шагом 1/300. Достоверность полученных результатов подтверждается их сравнением с литературными данными. Приводятся подробные картины течения и перегрева жидкости в зависимости от двух основных параметров задачи: $\text{Re}$ и $ER$. Показывается, что с одновременным ростом параметров $\text{Re}$ и $ER$ существенно усложняется структура течения - увеличиваются количество вихрей и их размеры вплоть до образования вихря за уступом с двумя центрами вращения. Также показывается, что характерная высота зоны прогрева течения слабо зависит от $\text{Re}$ и $ER$ и в конечном счете ближе к выходу из канала составляет приблизительно половину его высоты. Для всех центров вихрей определяются их основные характеристики: координаты, экстремумы функции тока, завихренности. Анализируется сложное немонотонное поведение профилей коэффициентов трения, сопротивления и теплоотдачи (числа Нуссельта) по длине канала. Показывается, что эти коэффициенты в одинаковой степени сильно зависят как от числа Рейнольдса, так и от параметра расширения канала, достигая своих максимальных значений при максимальных значениях $\text{Re}$ и $ER$.
-
Работа посвящена изучению устойчивости стационарных локализованных мод (солитонов щелевого типа) в одномерном нелинейном уравнении Шрёдингера (НУШ) с периодическим потенциалом и отталкивающей нелинейностью. Рассмотрены два класса решений: связанное состояние пары простейших щелевых солитонов из первой запрещенной зоны линейного спектра, находящихся в одной фазе или в противофазе и разделенных некоторым количеством пустых потенциальных ям. Для таких решений с помощью метода коллокации Фурье (Fourier collocation method) и метода функции Эванса (Evans function method) посчитаны линейные спектры задачи об устойчивости. Обнаружено, что если число разделяющих потенциальных ям между щелевыми солитонами нечетно (четно), то решения в одной фазе (в противофазе) экспоненциально неустойчивы. В этом случае, действительные части неустойчивых собственных значений в соответствующих спектрах экспоненциально убывают с ростом числа разделяющих периодов между щелевыми солитонами. С другой стороны, если число разделяющих потенциальных ям четно (нечетно), то решения в одной фазе (в противофазе) линейно устойчивы вдали от верхней границы первой запрещенной зоны, либо демонстрируют слабую осцилляторную неустойчивость вблизи границы запрещенной зоны. Для проверки результатов линейного анализа, был проведен численный счет НУШ с помощью конечно-разностной схемы. В результате эволюции, все рассмотренные в работе экспоненциально неустойчивые щелевые солитоны деформировались в пульсирующие объекты, тогда как устойчивые решения сохранили свой профиль в течение всего времени эксперимента.
-
О линейном алгоритме численного решения краевой задачи для простейшего волнового уравнения, с. 126-144Решение краевой задачи для простейшего волнового уравнения, заданной в прямоугольнике, допускает представление в виде суммы двух слагаемых. Они являются решениями двух краевых задач: в первом случае граничные функции постоянны, а во втором начальные функции имеют специальный вид. Подобная декомпозиция позволяет применять для численного решения обеих задач двумерные сплайны. Первая задача исследована ранее, получен экономичный алгоритм ее численного решения.
Для решения второй задачи определено конечномерное пространство сплайнов лагранжевого типа, а в качестве решения предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей, заданных на границе.
Формула для невязки представляет собой сумму двух простых слагаемых и двух положительно определенных квадратичных форм от новых конечных разностей, заданных на границе. Элементы матриц форм выражаются через многочлены Чебышёва, обе матрицы обратимы и таковы, что обратные к ним матрицы имеют трехдиагональный вид. Эта особенность позволяет получить для спектра матриц верхние и нижние оценки и показать, что невязка стремится к нулю с ростом размерности численной задачи. Данное обстоятельство обеспечивает корректность предлагаемого алгоритма численного решения второй задачи, обладающего линейной сложностью вычислений. -
Нуклеация и рост новой фазы на промежуточной стадии фазовых переходов в метастабильных растворах и расплавах, с. 283-296Найдено полное аналитическое решение интегро-дифференциальной модели, описывающей промежуточную стадию фазовых переходов в однокомпонентных расплавах и растворах без учета флуктуаций в скоростях роста кристаллов. В рамках этой модели получено точное аналитическое решение кинетического уравнения - найдена плотность функции распределения кристаллов по размерам. Выведено интегро-дифференциальное уравнение для степени метастабильности системы (для ее переохлаждения/пересыщения) при различных кинетических механизмах нуклеации зародышей. Построено полное аналитическое решение этого уравнения на основе метода седловой точки для вычисления интеграла лапласовского типа (метода перевала). Проанализировано четыре приближения аналитического решения и показана его сходимость. Исследованы кинетические механизмы Вебера-Вольмера-Френкеля-Зельдовича и Майера. Определены временные зависимости числа кристаллов и среднего размера кристаллов для переохлажденных расплавов.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.