Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье изучается существование положительных решений на отрезке $[0,1]$ двухточечной краевой задачи для одного нелинейного функционально-дифференциального уравнения третьего порядка с интегральным граничным условием на одном из концов отрезка. С помощью теоремы Го–Красносельского о неподвижной точке, с использованием некоторых свойств функции Грина соответствующего дифференциального оператора, получены достаточные условия существования по меньшей мере одного положительного решения рассматриваемой задачи. Приведен пример, иллюстрирующий полученные результаты.
функционально-дифференциальное уравнение, краевая задача, положительное решение, конус, функция ГринаThe article studies the existence of positive solutions on the segment $[0,1]$ of a two-point boundary value problem for one nonlinear third-order functional differential equation with an integral boundary condition at one of the ends of the segment. Using the Go–Krasnoselsky fixed point theorem and some properties of the Green's function of the corresponding differential operator, sufficient conditions for the existence of at least one positive solution to the problem under consideration are obtained. An example is given to illustrate the results obtained.
-
Рассматриваются вопросы разрешимости краевых задач для линейных функционально-дифференциальных уравнений. Предлагаются утверждения, позволяющие получать условия существования единственного решения, неотрицательности функции Грина и фундаментального решения однородного уравнения. Для применения этих утверждений требуется задать «эталонную» краевую задачу, обладающую соответствующими свойствами, и определить некоторый оператор по приведенному правилу через операторы, порожденные исследуемой и «эталонной» задачами. Если спектральный радиус этого оператора меньше 1, то рассматриваемая краевая задача однозначно разрешима. Аналогично: для получения условий неотрицательности функции Грина и фундаментального решения требуется определить по приведенному в работе правилу специальный оператор и проверить его положительность. Рассмотрен пример применения полученных утверждений к конкретной краевой задаче с интегральным краевым условием для уравнения, содержащего отклонения в аргументе неизвестной функции и ее производной.
линейное функционально-дифференциальное уравнение, краевая задача, функция Грина, фундаментальное решение однородного уравнения, положительный оператор
Comparison of solutions to boundary-value problems for linear functional-differential equations, pp. 284-292We consider the issues of solvability of boundary value problems for linear functional-differential equations. Statements allowing one to obtain conditions for the existence of a unique solution and for non-negativity of the Green's function, and to obtain a fundamental solution to the homogeneous equation are suggested. In order to apply these statements, one needs to define a “reference” boundary value problem that possesses the corresponding properties and to define an operator by means of the operators generated by the problem under study and the “reference” problem according to the given rule. If the spectral radius of this operator is less than 1, then the boundary value problem under consideration is uniquely solvable. Similarly, in order to obtain conditions for the nonnegativity of the Green's function and the fundamental solution, it is required to determine a special operator by the rule given in the paper and to verify its positivity. An example of application of the statements obtained to a particular boundary value problem with an integral boundary condition for the equation containing argument deviations to the unknown function and to its derivative is considered.
-
Пусть Q есть дифференциальный оператор порядка m − 1, 2 ≤ m ≤ n, для которого (a, b) будет промежутком неосцилляции, причём оператор Грина G : L[a, b] → Wn[a, b] краевой задачи Lx = f, li(x) = 0, i = 1, . . . , n обладает свойством обобщённой выпуклости: QGP > 0 для некоторого линейного гомеоморфизма P лебегова пространства L[a, b]. Найдены условия, при которых возмущённая краевая задача Lx = PVQx+f, li(x) = 0, i = 1, . . . , n также однозначно разрешима в соболевском пространстве Wn[a, b] и её оператор Грина Ĝ наследует свойство G, а именно QĜP > 0.
Let Q be a differential operator of order m − 1, 2 ≤ m ≤ n, for which (a, b) is the interval of nonoscillation, and the Green’s operator G : L[a, b] → Wn[a, b] of boundary value problem Lx = f, li(x) = 0, i = 1, . . . , n has the property of generalized convexity: QGP > 0 for some linear homeomorphism P of Lebesgue space L[a, b]. Under some conditions, we prove, that the perturbed boundary value problem Lx = PVQx+f, li(x) = 0, i = 1, . . . , n is also uniquely solvable in the Sobolev space Wn[a, b] and the Green’s operator Ĝ inherits the property of G, that is QĜP > 0.
-
Операторы Буте де Монвеля в пространствах Гёльдера–Зигмунда переменной гладкости на $\mathbb{R}^{n}_+$, с. 194-209Рассматриваются операторы Грина из алгебры Буте де Монвеля в пространствах Гёльдера–Зигмунда переменного порядка гладкости на $\overline{\mathbb R}^n_+$. Порядок гладкости зависит от точки пространства и может принимать отрицательные значения. Доказаны достаточные условия ограниченности оператора Буте де Монвеля в этих пространствах.
алгебра Буте де Монвеля, операторы Грина, пространства Гёльдера–Зигмунда, переменный показатель гладкостиWe consider Green operators from the Boutet de Monvel algebra in the Hölder–Zygmund spaces of variable smoothness on $\overline{\mathbb R}^{n}_+$. The order of smoothness depends on a point in the domain and may take negative values. The sufficient conditions of boundedness of the Boutet de Monvel operators are obtained.
-
Базисность системы собственных функций дифференциального оператора второго порядка с инволюцией, с. 183-196В настоящей работе мы изучаем спектральную задачу для дифференциального оператора второго порядка с инволюцией и с краевыми условиями типа Дирихле. Построена функция Грина изучаемой краевой задачи. Получены равномерные оценки функций Грина рассматриваемых краевых задач. Установлена равносходимость разложений произвольной функции из класса $L_{1}(-1,1)$ по собственным функциям двух дифференциальных операторов второго порядка с инволюцией с краевыми условиями типа Дирихле. Мы используем интегральный метод, основанный на функции Грина дифференциального оператора второго порядка с инволюцией и со спектральным параметром. Как следствие из доказанной теоремы о равносходимости разложений по собственным функциям, мы доказываем базисность в пространстве $L_{2}(-1,1)$ собственных функций спектральной задачи с непрерывным комплекснозначным коэффициентом $q(x).$
Basis property of a system of eigenfunctions of a second-order differential operator with involution, pp. 183-196In the present paper we study the spectral problem for the second-order differential operators with involution and boundary conditions of Dirichlet type. The Green's function of this boundary problem is constructed. Uniform estimates of the Green's functions for the boundary value problems considered are obtained. The equiconvergence of eigenfunction expansions of two second-order differential operators with involution and boundary conditions of Dirichlet type for any function in $L_{2}(-1,1)$ is established. We use an integral method based on the application of the Green's function of a differential operator with involution and spectral parameter. As a corollary from the equiconvergence theorem, it is proved that the eigenfunctions of the spectral problem form the basis in $L_{2}(-1,1)$ for any continuous complex-valued coefficient $q(x)$.
-
Предлагается описание сопряженного оператора к оператору, соответствующему линейной многоточечной краевой задаче для квазидифференциального уравнения, обладающее свойствами: исходный и сопряженный к нему оператор действуют из одного и того же рефлексивного банахова пространства в сопряженное банахово пространство; сопряженный оператор также соответствует некоторой линейной многоточечной краевой задаче для квазидифференциального уравнения.
We study multipoint boundary value problems for quasidifferential equations, under certain (broad) assumptions on the coefficients of the equation so that there exists the formally adjoint (in the sense of Lagrange) quasidifferential equation. The operator corresponding to the original boundary value problem is densely defined in a reflexive Banachian space and has closed image in its adjoint; the operator corresponding to the adjoint problem has exactly the same properties. We note that the adjoint boundary value problem is not classical: its solution satisfies the quasidifferential equation only in the open intervals between points in which boundary conditions are specified. These considerations lead us to the notion of the generalized boundary value problem. In particular, we introduce the notion of the generalized Valle-Pousin problem (GVPP), where the number of boundary conditions may exceed the order of the equation by allowing higher quasiderivatives of the solution to be discontinuous at the interior points in which boundary conditions are specified. We also show that the boundary value problem adjoint to GVPP is itself a GVPP.
-
Рассматривается система уравнений Грина-Нагди, описывающая распространение длинных волн на поверхности жидкости. Построены продолжения операторов алгебры симметрии уравнений Грина-Нагди, вычислены ее дифференциальные инварианты и операторы инвариантного дифференцирования. Доказана теорема о базисе дифференциальных инвариантов алгебры симметрии уравнений Грина-Нагди. Кроме того, описаны связи между дифференциальными инвариантами, порождаемые операторами инвариантного дифференцирования и самими дифференциальными уравнениями. Для построения в дальнейшем дифференциально инвариантных решений необходимо исследование условий совместности полученной переопределенной системы.
уравнения Грина-Нагди, дифференциальные инварианты, операторы инвариантного дифференцирования, базис дифференциальных инвариантовSystem of Green-Naghdi equations describing long wave propagation on fluid surface is considered. Extensions of operator of Lie algebra of these equations, the differential invariants and the operators of invariant differentiation are calculated. The theorem about the basis of the differential invariants ie proved. In addition, the dependence between the differential invariants is described.
-
Приводятся достаточные условия разрешимости нелинейных краевых задач для некоторых классов функционально-дифференциальных уравнений. Условия получены на основе редукции исходной задачи к уравнению с монотонным оператором.
Sufficient conditions of resolvability of nonlinear boundary value problems for some classes of functional differential equations are presented. These conditions have been obtained on the basis of reduction of original problem to the equation with a monotone operator.
-
Cуществование майорановских локализованных состояний в простой модели перехода Джозефсона, с. 351-362Последние 15 лет в физической литературе активно изучаются майорановские локализованные состояния (МЛС) и сопутствующие их возникновению явления, такие, как изменение кондактанса и эффект Джозефсона, что обусловлено вероятным применением МЛС при создании квантового компьютера. В статье изучены собственные функции одномерного оператора Боголюбова-де Жена с дельтаобразным потенциалом в нуле, описывающие локализованные состояния с энергией в лакуне спектра (сверхпроводящей щели). Найдены вероятности прохождения в задаче рассеяния для этого оператора, когда энергии близки к границе сверхпроводящей щели. Эти задачи исследовались как для единого на всей прямой сверхпроводящего порядка, определяемого вещественной константой $\Delta,$ так и для сверхпроводящего порядка, определяемого функцией $\Delta \theta (-x)+\Delta e^{i\varphi} \theta (x)$ для $\varphi=0,\pi$ (т.е. для нулевого сверхпроводящего тока и тока, близкого к критическому). Используемый гамильтониан можно рассматривать как простейшую модель перехода Джозефсона. Доказано, что в обоих случаях существуют два МЛС, но лишь при определенных значениях параметров, т.е. МЛС неустойчивы. При этом вероятность прохождения равна нулю в обоих случаях.
гамильтониан Боголюбова-де Жена, функция Грина, спектр, собственное значение, задача рассеяния, вероятность прохождения, майорановские локализованные состояния, эффект ДжозефсонаFor the last 15 years, Majorana bounded states (MBSs) and associated phenomena, such as variation of conductance and the Josephson effect, have been actively studied in the physical literature. Research in this direction is motivated by a highly probable use of MBSs in quantum computing. The article studies the eigenfunctions of the one-dimensional Bogolyubov-de Gennes operator with a delta-shaped potential at zero, describing localized states with energy in the spectral gap (superconducting gap). The transmission probabilities are found in the scattering problem for this operator, when the energies are close to the boundary of the superconducting gap. These problems are studied both for a superconducting order that is the only one on the whole straight line and is defined by the real constant $\Delta,$ and for a superconducting order defined by the function $\Delta\theta(-x)+\Delta e^{i\varphi}\theta(x)$ for $\varphi=0,\pi$ (i.e., for zero superconducting current and for current close to critical). The Hamiltonian used can be considered as the simplest model of the Josephson junction. It is proved that in both cases there are two MBSs, but with certain values of the parameters, i.e., MBSs are unstable. Moreover, the probability of passage is zero in both cases.
-
В данной статье для одного дифференциального уравнения в частных производных высокого четного порядка с оператором Бесселя в прямоугольной области сформулированы две нелокальные начально-граничные задачи. Исследована корректность одной из поставленных задач. При этом применением метода разделения переменных к изучаемой задаче получена спектральная задача для обыкновенного дифференциального уравнения высокого четного порядка. Доказана самосопряженность последней задачи, откуда следует существование системы ее собственных функций, а также ортонормированность и полнота этой системы. Далее, построена функция Грина спектральной задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром. С помощью этого интегрального уравнения и теоремы Мерсера исследована равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Доказана равномерная сходимость этого ряда, а также рядов, полученных из него почленным дифференцированием. Методом спектрального анализа доказана единственность решения задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.
дифференциальное уравнение четного порядка, нелокальная задача, функция Грина, интегральное уравнение
On the solvability of nonlocal initial-boundary value problems for a partial differential equation of high even order, pp. 240-255In the present paper, two non-local initial-boundary value problems have been formulated for a partial differential equation of high even order with a Bessel operator in a rectangular domain. The correctness of one of the considered problems has been investigated. To do this, applying the method of separation of variables to the problem under consideration, the spectral problem was obtained for an ordinary differential equation of high even order. The self-adjointness of the last problem was proved, which implies the existence of the system of its eigenfunctions, as well as orthonormality and completeness of this system. Further, the Green's function of the spectral problem was constructed, with the help of which it was equivalently reduced to the Fredholm integral equation of the second kind with symmetrical kernel. Using this integral equation and Mercer's theorem, the uniform convergence of some bilinear series depending on found eigenfunctions has been studied. The order of the Fourier coefficients was established. The solution of the considered problem has been written as the sum of a Fourier series with respect to the system of eigenfunctions of the spectral problem. The uniform convergence of this series and also the series obtained from it by term-by-term differentiation was proved. Using the method of spectral analysis, the uniqueness of the solution of the problem was proved. An estimate for the solution of the problem was obtained, from which its continuous dependence on the given functions follows.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.