Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена исследованию свойства интегральной разделенности линейных систем с дискретным временем. Согласно определению система $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ называется системой с интегральной разделенностью, если она имеет фундаментальную систему решений $x^1(\cdot),\ldots,x^n(\cdot)$ такую, что при некоторых $\gamma>0$, $a>1$ и всех натуральных $m>s$, $i\leqslant n-1$ выполнены неравенства $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ Понятие интегральной разделенности систем с непрерывным временем было введено Б.Ф. Быловым в 1965 году. Доказаны критерии интегральной разделенности систем с дискретным временем: приводимость к диагональному виду с интегрально разделенной диагональю; устойчивость и некратность показателей Ляпунова. Подробно исследовано также свойство диагонализируемости систем с дискретным временем. Доказательства учитывают специфику этих систем.
линейная система с дискретным временем, показатели Ляпунова, интегральная разделенность, диагонализируемостьThis paper is devoted to the study of the property of an integral separation of discrete time-varying linear systems. By definition, the system $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ is called a system with integral separation if it has a basis of solutions $x^1(\cdot),\ldots,x^n(\cdot)$ such that for some $\gamma>0$, $a>1$ and all natural $m>s$, $i\leqslant n-1$ the inequalities $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ are satisfied. The concept of integral separation of systems with continuous time was introduced by B.F. Bylov in 1965. The criteria for the integral separation of systems with discrete time are proved: reducibility to diagonal form with an integrally separated diagonal; stability and nonmultiplicity of Lyapunov exponents. The property of diagonalizability of discrete-time systems is also studied in detail. The evidence takes into account the specifics of these systems.
-
Бифуркационное исследование перехода к хаосу в колебательной системе движения пластинки в жидкости, с. 3-18Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова-Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова-Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.
движение тела в жидкости, особая точка, предельный цикл, гомоклиническая траектория, каскад бифуркаций, аттрактор, хаос, старший показатель Ляпунова
Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid, pp. 3-18We consider the model of chaotic motion of a plate in a viscous fluid, described by an oscillatory system of three ordinary differential equations with a quadratic nonlinearity. In the course of the bifurcation study of singular points of the system, maps of the types of singular points are constructed and a surface equation is found in the space of dissipation and circulation parameters on which the Andronov-Hopf bifurcation of the limit cycle creation takes place. With a further change in the parameters near the Andronov-Hopf surface, cascades of the period doubling doubling of the Feigenbaum cycle and the Sharkovsky subharmonic cascades, ending with the creation of a cycle of period three, are found. Expressions are obtained for saddle numbers of the saddle-node and two saddle-foci and their plots are plotted in the parameter space. It is shown that homoclinic cascades of bifurcations are realized in the system with the destruction of homoclinic trajectories of saddle-foci. The existence of homoclinic trajectories of saddle-foci is proved by a numerical-analytical method. The graphs of the largest Lyapunov exponent and the bifurcation diagrams show that when the dissipation coefficients change, the system switches to chaos in several stages.
-
Рассматривается задача о назначении спектра показателей Ляпунова линейной управляемой системы с дискретным временем $$x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \qquad (1)$$ посредством линейной по фазовым переменным обратной связи $u(m)=U(m)x(m)$ в малой окрестности спектра показателей свободной системы $$x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (2)$$ Дополнительно требуется, чтобы норма матрицы обратной связи $U(\cdot)$ удовлетворяла липшицевой оценке по отношению к требуемому смещению показателей. Это свойство называется пропорциональной локальной управляемостью полного спектра показателей Ляпунова замкнутой системы $$x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (3)$$ Построен пример, показывающий, что найденные ранее достаточные условия пропорциональной локальной управляемости полного спектра показателей Ляпунова системы (3) (равномерная полная управляемость системы (1) и устойчивость показателей Ляпунова свободной системы (2)) не являются необходимыми.
On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system, pp. 301-311We consider a problem of assigning the Lyapunov spectrum for a linear control discrete-time system $$x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \qquad (1)$$ in a small neighborhood of the Lyapunov spectrum of the free system $$x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\qquad (2) $$ by means of linear feedback $u(m)=U(m)x(m)$. We assume that the norm of the feedback matrix $U(\cdot)$ satisfies the Lipschitz estimate with respect to the required shift of the Lyapunov spectrum. This property is called proportional local assignability of the Lyapunov spectrum of the closed-loop system $$x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (3)$$ We previously proved that uniform complete controllability of system (1) and stability of the Lyapunov spectrum of free system (2) are sufficient conditions for proportional local assignability of the Lyapunov spectrum of closed-loop system (3). In this paper we give an example demonstrating that these conditions are not necessary.
-
Пусть зафиксирован некоторый класс возмущений матрицы коэффициентов $A(\cdot)$ дискретной линейной однородной системы вида $$x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,$$ с вполне ограниченной на $\mathbb Z$ матрицей $A(\cdot)$. Спектральным множеством этой системы, отвечающим заданному классу возмущений, называем совокупность полных спектров показателей Ляпунова возмущенных систем, когда возмущения пробегают весь заданный класс. Основное внимание в работе уделено классу ${\cal R}$ возмущенных систем вида $$y(m+1)=A(m)R(m)x(m),\quad m\in\mathbb Z,\quad y\in\mathbb R^n,$$ с вполне ограниченными на $\mathbb Z$ матрицами $R(\cdot)$, и его подклассам ${\cal R}_{\delta}$ с матрицами $R(\cdot)$, удовлетворяющими оценке $\sup_{m\in\mathbb Z}\|R(m)-E\|<\delta$, где $\delta>0$. Доказано, что если показатели Ляпунова исходной системы устойчивы, то спектральное множество $\lambda({\cal R})$, отвечающее классу ${\cal R}$, совпадает с множеством всех упорядоченных по возрастанию наборов из $n$ чисел, при этом для каждого $\Delta>0$ существует такое $\ell=\ell(\Delta)>0$, что для любого $\delta<\Delta$ спектральное множество $\lambda({\cal R}_{\ell\delta})$ содержит в себе $\delta$-окрестность полного спектра показателей Ляпунова невозмущенной системы.
Let us fix a certain class of perturbations of the coefficient matrix $A(\cdot)$ for a discrete time-varying linear system $$x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,$$ where $A(\cdot)$ is completely bounded on $\mathbb Z$, i.e., $\sup_{m\in\mathbb Z}\bigl(\|A(m)\|+\|A^{-1}(m)\|\bigr)<\infty$. The spectral set of this system, corresponding to a given class of perturbations, is a collection of all Lyapunov spectra (with multiplicities) for perturbed systems, when the perturbations range over this class all. The main attention is paid to the class ${\cal R}$ of perturbed systems $$y(m+1)=A(m)R(m)y(m),\quad m\in\mathbb Z,\quad y\in\mathbb R^n,$$ where $R(\cdot)$ is completely bounded on $\mathbb Z$, as well as its subclasses ${\cal R}_{\delta}$, where $\sup_{m\in\mathbb Z}\|R(m)-E\|<\delta$, $\delta>0$. For an original system with stable Lyapunov exponents, we prove that the spectral set $\lambda({\cal R})$ of class ${\cal R}$ coincides with the set of all ordered ascending sets of $n$ numbers. Moreover, for any $\Delta> 0$ there exists an $\ell =\ell(\Delta)> 0 $ such that for any $\delta<\Delta$ the spectral set $\lambda({\cal R}_{\ell\delta})$ contains the $\delta$-neighborhood of the Lyapunov spectrum of the unperturbed system.
-
Об управлении отдельными асимптотическими инвариантами двумерных линейных управляемых систем с наблюдателем, с. 445-461Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).
линейная управляемая система с наблюдателем, равномерная полная управляемость, равномерная полная наблюдаемость, глобальная управляемость асимптотических инвариантов
Control over some asymptotic invariants of two-dimensional linear control systems with an observer, pp. 445-461We consider a linear time-varying control system with an observer with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p. \qquad(2)$$ We study a problem of control over asymptotic invariants for the system closed by linear dynamic output feedback with time-varying coefficients. The research method presented in the paper is based on the construction of a system of asymptotic estimation for the state of the system (1), (2), introduced by R. Kalman. For solving the problem, we use the extension of the notion of uniform complete controllability (in the sense of Kalman) proposed by E.L. Tonkov for systems with coefficients from wider functional classes. The notion of uniform complete observability (in the sense of Tonkov) is given for the system (1), (2). For $n=2$, it is proved that uniform complete controllability and uniform complete observability (in the sense of Tonkov) of the system (1), (2) with locally integrable and integrally bounded coefficients are sufficient for arbitrary assignability of the upper Bohl exponent and of the complete spectrum of the Lyapunov exponents for the system closed-loop by linear dynamic output feedback. For the proof, we use the previously established results on uniform global attainability of a two-dimensional system (1), closed by linear time-varying static state feedback, under the condition of uniform complete controllability (in the sense of Tonkov) of the open-loop system (1).
-
Получена оценка сверху для показателей Ляпунова возмущенной абстрактной линейной системы.
Upper-bound estimate for Lyapunov exponents of perturbed abstract linear system is obtained.
-
Доказано, что линейная управляемая система $$ \dot x=A(t)x+B(t)u, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \quad u\in\mathbb{R}^m, \qquad\qquad (1) $$ с коэффициентами в форме Хессенберга при достаточно широких условиях на коэффициенты обладает свойством равномерной полной управляемости в смысле Калмана. Показана существенность для некоторых полученных достаточных условий. Установлены следствия для квазидифференциальных уравнений. Исследуется задача о глобальном управлении асимптотическими инвариантами системы $$ \dot x=(A(t)+B(t)U)x, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \qquad \qquad \qquad \qquad (2) $$ полученной замыканием системы $(1)$ обратной связью $u=Ux$. В известных результатах С.Н. Поповой ослабляются условия на коэффициенты. Для системы $(2)$ с коэффициентами в форме Хессенберга, с помощью результатов С.Н. Поповой, получены достаточные условия глобальной скаляризуемости и глобальной управляемости показателей Ляпунова, а в случае когда $A(\cdot)$ и $B(\cdot)$ - $\omega$-периодические и достаточные условия глобальной ляпуновской приводимости.
линейная управляемая система, равномерная полная управляемость, система в форме Хессенберга, глобальное управление асимптотическими инвариантамиWe prove that a linear control system $$ \dot x=A(t)x+B(t)u, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \quad u\in\mathbb{R}^m, \qquad \qquad (1) $$ with matrix coefficients of the Hessenberg form is uniformly completely controllable in the sense of Kalman under rather weak conditions imposed on coefficients. It is shown that some obtained sufficient conditions are essential. Corollaries are derived for quasi-differential equations. We construct feedback control $u=Ux$ for the system $(1)$ and study the problem of global control over asymptotic invariants of the closed-loop system $$ \dot x=(A(t)+B(t)U)x, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n. \qquad \qquad \qquad \qquad (2) $$ The conditions on coefficients are weakened in the known results of S.N. Popova. For the system $(2)$ with matrix coefficients of the Hessenberg form, the obtained results and the results of S.N. Popova are used to receive sufficient conditions for global reducibility to systems of scalar type and for global control over Lyapunov exponents and moreover, for global Lyapunov reducibility in the case of periodic $A(\cdot)$ and $B(\cdot)$.
-
Рассматривается дискретная линейная однородная система
$$x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n, \qquad\qquad (1)$$
с вполне ограниченной матрицей $A(\cdot)$ и полным спектром показателей Ляпунова $\lambda_1(A)\leqslant\ldots\leqslant\lambda_n(A)$. Показатели Ляпунова системы (1) называются устойчивыми, если для любого $\varepsilon>0$ найдется такое $\delta>0$, что для всякой вполне ограниченной на $\mathbb N$ $n\times n$-матрицы $R(\cdot)$, удовлетворяющей оценке $\sup_{m\in\mathbb N}\|R(m)-E\|<\delta$, для полного спектра показателей Ляпунова $\lambda_1(AR)\leqslant\ldots\leqslant\lambda_n(AR)$ возмущенной системы
$$z(m+1)=A(m)R(m)z(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,$$
справедливо неравенство $\max_{j=1,\ldots,n}|\lambda_j(A)-\lambda_j(AR)|<\varepsilon$. В работе построен пример системы вида (1) с неустойчивыми показателями Ляпунова.
We consider a discrete time-varying linear system
$$x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n,\qquad\qquad (1)$$
where $A(\cdot)$ is completely bounded on $\mathbb N$, i.e., $\sup_{m\in\mathbb N}\bigl(\|A(m)\|+\|A^{-1}(m)\|\bigr)<\infty$. Let $\lambda_1(A)\leqslant\ldots\leqslant\lambda_n(A)$ be the Lyapunov spectrum of the system (1). It is called stable if for any $\varepsilon>0$ there exists a $\delta>0$ such that for every completely bounded $n\times n$-matrix $R(\cdot)$, $\sup_{m\in\mathbb N}\|R(m)-E\|<\delta$, the inequality $$\max_{j=1,\ldots,n}|\lambda_j(A)-\lambda_j(AR)|<\varepsilon $$ holds. We construct an example of the system (1) with unstable Lyapunov spectrum.
-
Ряд задач в теории характеристических показателей Ляпунова линейных дифференциальных систем
ẋ=A(t)x, x∈Rn, t≥0,
сводится к изучению влияния возмущений коэффициентов на характеристические показатели и другие асимптотические инварианты возмущенных систем
ẏ=A(t)y+Q(t)y, y∈Rn, t≥0.
При этом возмущения коэффициентов предполагаются принадлежащими некоторым классам малости, то есть определенным подмножествам множества KCn(R+) кусочно-непрерывных и ограниченных на положительной полуоси n×n-матриц. Обычно используемые классы возмущений, например бесконечно малые (исчезающие в бесконечности), экспоненциально убывающие либо суммируемые на полуоси, задаются конкретными аналитическими условиями, но общее определение класса малости в теории показателей отсутствует. На основе анализа свойств общепринятых классов малости нами предложено аксиоматическое определение класса малости возмущений коэффициентов линейных дифференциальных систем, которому удовлетворяет большинство таких классов, используемых в теории характеристических показателей. Это определение достаточно громоздко. Для более компактной характеристики классов малости предложено использовать следующее их свойство: множество возмущений удовлетворяет предложенному определению класса малости тогда и только тогда, когда оно является полной матричной алгеброй над произвольным нетривиальным идеалом кольца функций KC1(R+) (с поточечным умножением), содержащим хотя бы одну строго положительную функцию.
A number of problems in the Lyapunov exponent theory of linear differential systems
ẋ=A(t)x, x∈Rn, t≥0,
can be reduced to an investigation of the influence of coefficient perturbations on characteristic exponents and other asymptotic invariants of perturbed systems
ẏ=A(t)y+Q(t)y, y∈Rn, t≥0.
Here perturbations are assumed to be in some classes of smallness, i.e. certain subsets of the space KCn(R+) of piecewise continuous and bounded on the positive semiaxis n×n-matrices. Commonly used classes of perturbations, such as infinitesimal (vanishing at infinity), exponentially decaying or integrable on the positive semiaxis are defined by specific analytical conditions, but there is no general definition of the smallness class. By analyzing the desirable properties of commonly used classes, we propose an axiomatic definition for this notion, such that most of classes used in the theory of characteristic exponents satisfy this definition. Since the axioms are somewhat cumbersome, for more compact characterization we propose to use the following property of smallness classes: the set of perturbation satisfies the proposed definition if and only if it is a complete matrix algebra over an arbitrary non-trivial ideal of functional ring KC1(R+) (with the pointwise multiplication) containing at least one strictly positive function.
-
В данной работе исследуются различные разновидности показателей колеблемости (верхние или нижние, сильные или слабые) нулей, корней, гиперкорней, строгих и нестрогих знаков ненулевых решений линейных однородных автономных дифференциальных систем на положительной полуоси. На множестве ненулевых решений автономных систем установлены соотношения между этими показателями колеблемости. Полностью изучены спектры показателей колеблемости автономных систем. Оказалось, что они напрямую зависят от корней соответствующего характеристического многочлена системы. Как следствие, найдены спектры всех показателей колеблемости автономных систем с симметричной матрицей. Доказано, что они состоят из одного нулевого значения. Кроме того, дано полное описание главных значений показателей колеблемости таких систем. Эти значения для показателей колеблемости нестрогих знаков, корней и гиперкорней совпали с множеством модулей мнимых частей собственных значений матрицы системы, а показатели колеблемости строгих знаков могут состоять из нуля и наименьшего по модулю из мнимых частей комплексных корней соответствующего характеристического многочлена.
дифференциальные уравнения, линейные системы, колеблемость, число нулей, показатели колеблемости, показатели Ляпунова
Properties of exponents of oscillation of linear autonomous differential system solutions, pp. 558-568In this paper, we study various types of exponents of oscillation (upper or lower, strong or weak) of zeros, roots, hyperroots, strict and non-strict signs of non-zero solutions of linear homogeneous autonomous differential systems on the positive semi-axis. On the set of non-zero solutions of autonomous systems the relations between these exponents of oscillation are established. The spectra of the exponents of autonomous systems' oscillation are fully studied. It turned out that they directly depend on the roots of the corresponding characteristic polynomial of the system. As a consequence, spectra of all exponents of oscillation of autonomous systems with symmetric matrix are found. It is proved that they consist of a single zero value. In addition, a full description of the main values of the exponents of oscillation of such systems is given. These values for the exponents of oscillation of non-strict signs, roots and hyperroots coincided with the set of modules of imaginary parts of the system matrix's eigenvalues, and the exponents of oscillation of strict signs can consist of zero and the least, in absolute magnitude, imaginary part of the complex roots of the corresponding characteristic polynomial.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.