Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'Lyapunov functions':
Найдено статей: 17
  1. Для билинейной управляемой системы с периодическими коэффициентами получены достаточные условия равномерной глобальной асимптотической стабилизации нулевого решения. Доказательство основано на применении теоремы Красовского об асимптотической устойчивости в целом нулевого решения для периодических систем. Стабилизирующее управление построено по принципу обратной связи. Оно имеет вид квадратичной формы от фазовой переменной и является периодическим по времени.

    Sufficient conditions for uniform global asymptotic stabilization of the origin are obtained for bilinear control systems with periodic coefficients. The proof is based on the use of the Krasovsky theorem on global asymptotic stability of the origin for periodic systems. The stabilizing control function is feedback control constructed as the quadratic form of the phase variables and depends on time periodically.

  2. Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).

    We consider a linear time-varying control system with an observer with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p. \qquad(2)$$ We study a problem of control over asymptotic invariants for the system closed by linear dynamic output feedback with time-varying coefficients. The research method presented in the paper is based on the construction of a system of asymptotic estimation for the state of the system (1), (2), introduced by R. Kalman. For solving the problem, we use the extension of the notion of uniform complete controllability (in the sense of Kalman) proposed by E.L. Tonkov for systems with coefficients from wider functional classes. The notion of uniform complete observability (in the sense of Tonkov) is given for the system (1), (2). For $n=2$, it is proved that uniform complete controllability and uniform complete observability (in the sense of Tonkov) of the system (1), (2) with locally integrable and integrally bounded coefficients are sufficient for arbitrary assignability of the upper Bohl exponent and of the complete spectrum of the Lyapunov exponents for the system closed-loop by linear dynamic output feedback. For the proof, we use the previously established results on uniform global attainability of a two-dimensional system (1), closed by linear time-varying static state feedback, under the condition of uniform complete controllability (in the sense of Tonkov) of the open-loop system (1).

  3. Рассматривается обобщенное уравнение Курамото-Сивашинского в случае, когда неизвестная функция зависит от двух пространственных переменных. Такой вариант данного уравнения используется в качестве математической модели формирования неоднородного рельефа на поверхности полупроводников под воздействием потока ионов. В работе данное уравнение изучается вместе с однородными краевыми условиями Неймана в трех областях: прямоугольнике, квадрате и равнобедренном треугольнике. Изучен вопрос о локальных бифуркациях при смене устойчивости пространственно однородными состояниями равновесия. Показано, что в данных трех краевых задачах реализуются послекритические бифуркации и в их результате в каждой из трех изучаемых краевых задач бифурцируют пространственно неоднородные решения. Для них получены асимптотические формулы. Выявлена зависимость характера бифуркаций от выбора, геометрии области. В частности, определен вид зависимости от пространственных переменных. Изучен вопрос об устойчивости, в смысле определения А.М. Ляпунова, найденных пространственно неоднородных решений. Анализ бифуркационных задач использовал известные методы теории динамических систем с бесконечномерным фазовым пространством: интегральных (инвариантных) многообразий, нормальных форм Пуанкаре-Дюлака в сочетании с асимптотическими методами.

    The generalized Kuramoto-Sivashinsky equation in the case when the unknown function depends on two spatial variables is considered. This version of the equation is used as a mathematical model of formation of nonhomogeneous relief on a surface of semiconductors under ion beam. This equation is studied along with homogeneous Neumann boundary conditions in three regions: a rectangle, a square, and an isosceles triangle. The problem of local bifurcations in the case when spatially homogeneous equilibrium states change stability is studied. It is shown that for these three boundary value problems post-critical bifurcations occur and, as a result, spatially nonhomogeneous solutions bifurcate in each of these boundary value problems. For them asymptotic formulas are obtained. The dependence of the nature of bifurcations on the choice and geometry of the region is revealed. In particular, the type of dependence on spatial variables is determined. The problem of Lyapunov stability of spatially nonhomogeneous solutions is studied. Well-known methods from dynamical systems theory with an infinite-dimensional phase space: integral (invariant) manifolds, normal Poincare-Dulac forms in combination with asymptotic methods are used to analyze the bifurcation problems.

  4. Рассматриваются две задачи нелинейного гарантированного оценивания фазовых состояний динамических систем. Предполагается, что неизвестные измеримые по $t$ возмущения линейно входят в уравнение движения и аддитивно — в уравнения измерения. Эти возмущения стеснены нелинейными интегральными функционалами, один из которых является аналогом функционала обобщенной работы. Исследуемая задача состоит в построении информационных множеств по данным измерения, содержащих истинное положение траектории. Используется подход динамического программирования. Если для первого функционала требуется решить нелинейное уравнение в частных производных первого порядка, что не всегда возможно, то для функционала обобщенной работы достаточно найти решение линейного уравнения Ляпунова первого порядка, что существенно упрощает задачу. Тем не менее, даже в этом случае приходится налагать дополнительные условия на параметры системы для того, чтобы траектория системы, соответствующая наблюдаемому сигналу, существовала. Если уравнение движения линейно по фазовой переменной, то многие предположения выполняются автоматически. Для этого случая обсуждается вопрос о взаимной оценке сверху и снизу информационных множеств по включению для разных функционалов. В заключение рассмотрен наиболее прозрачный линейно-квадратичный случай. Изложение иллюстрируется примерами.

    Two problems of nonlinear guaranteed estimation for states of dynamical systems are considered. It is supposed that unknown measurable in $t$ disturbances are linearly included in the equation of motion and are additive in the measurement equations. These disturbances are constrained by nonlinear integral functionals, one of which is analog of functional of the generalized work. The studied problem consists in creation of the information sets according to measurement data containing the true position of the trajectory. The dynamic programming approach is used. If the first functional requires solving a nonlinear equation in partial derivatives of the first order which is not always possible, then for functional of the generalized work it is enough to find a solution of the linear Lyapunov equation of the first order that significantly simplifies the problem. Nevertheless, even in this case it is necessary to impose additional conditions on the system parameters in order for the system trajectory of the observed signal to exist. If the motion equation is linear in state variable, then many assumptions are carried out automatically. For this case the issue of mutual approximation of information sets via inclusion for different functionals is discussed. In conclusion, the most transparent linear quadratic case is considered. The statement is illustrated by examples.

  5. Решена задача о построении асимптотически устойчивых произвольно заданных программных движений уравновешенного гиростата относительно центра масс. Решение получено синтезом активного программного управления, приложенного к системе тел, и стабилизирующего управления по принципу обратной связи. Управление построено в виде точного аналитического решения в классе непрерывных функций. Задача решена на основе прямого метода Ляпунова теории устойчивости с использованием функций Ляпунова со знакопостоянными производными.

    Bezglasnyi S.P., Khudyakova M.A.
    The stabilization of program motions of balanced gyrostat, pp. 31-38

    We consider program motion of balanced gyrostat. We solve the problem of construction asimptotically stability program motion. The program motion can be any function. Control is received in the form the analytical solution. We solve the problem of stabilization by the direct Lyapunov’s method and the method of limiting functions and systems. In this case we can use the Lyapunov’s functions having constant signs derivatives.

  6. Ряд задач в теории характеристических показателей Ляпунова линейных дифференциальных систем

    =A(t)x,    x∈Rn,    t≥0,

    сводится к изучению влияния возмущений коэффициентов на характеристические показатели и другие асимптотические инварианты возмущенных систем

    =A(t)y+Q(t)y,    y∈Rn,    t≥0.

    При этом возмущения коэффициентов предполагаются принадлежащими некоторым классам малости, то есть определенным подмножествам множества KCn(R+) кусочно-непрерывных и ограниченных на положительной полуоси n×n-матриц. Обычно используемые классы возмущений, например бесконечно малые (исчезающие в бесконечности), экспоненциально убывающие либо суммируемые на полуоси, задаются конкретными аналитическими условиями, но общее определение класса малости в теории показателей отсутствует. На основе анализа свойств общепринятых классов малости нами предложено аксиоматическое определение класса малости возмущений коэффициентов линейных дифференциальных систем, которому удовлетворяет большинство таких классов, используемых в теории характеристических показателей. Это определение достаточно громоздко. Для более компактной характеристики классов малости предложено использовать следующее их свойство: множество возмущений удовлетворяет предложенному определению класса малости тогда и только тогда, когда оно является полной матричной алгеброй над произвольным нетривиальным идеалом кольца функций KC1(R+) (с поточечным умножением), содержащим хотя бы одну строго положительную функцию.

    A number of problems in the Lyapunov exponent theory of linear differential systems

    =A(t)x,    x∈Rn,    t≥0,

    can be reduced to an investigation of the influence of coefficient perturbations on characteristic exponents and other asymptotic invariants of perturbed systems

    =A(t)y+Q(t)y,    y∈Rn,    t≥0.

    Here perturbations are assumed to be in some classes of smallness, i.e. certain subsets of the space KCn(R+) of piecewise continuous and bounded on the positive semiaxis n×n-matrices. Commonly used classes of perturbations, such as infinitesimal (vanishing at infinity), exponentially decaying or integrable on the positive semiaxis are defined by specific analytical conditions, but there is no general definition of the smallness class. By analyzing the desirable properties of commonly used classes, we propose an axiomatic definition for this notion, such that most of classes used in the theory of characteristic exponents satisfy this definition. Since the axioms are somewhat cumbersome, for more compact characterization we propose to use the following property of smallness classes: the set of perturbation satisfies the proposed definition if and only if it is a complete matrix algebra over an arbitrary non-trivial ideal of functional ring KC1(R+) (with the pointwise multiplication) containing at least one strictly positive function.

  7. Получены достаточные условия асимптотической устойчивости и слабой асимптотической устойчивости заданного множества $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ относительно управляемой системы с импульсным воздействием в предположении, что функция $t\mapsto M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и замкнуто. Также получены условия, при которых для каждого решения $x(t,x_0)$ управляемой системы, выходящего из достаточно малой окрестности множества $M(t_0),$ найдется момент времени $t^*$ такой, что точка $(t,x(t,x_0))$ принадлежит $\mathfrak M$ при всех $t\in [t^*,+\infty).$ Некоторые из представленных здесь утверждений являются аналогами результатов Е.А. Панасенко и Е.Л. Тонкова для систем с импульсами, в других утверждениях существенно используется специфика импульсного воздействия. Результаты работы проиллюстрированы на примере модели «вредитель-биоагент» с импульсным управлением в предположении, что вбросы биоагентов (природных врагов данных вредителей) происходят в фиксированные моменты времени и количество вредителей, потребляемых в среднем одним биоагентом за единицу времени, задается трофической функцией Холлинга. Получены условия асимптотической устойчивости множества $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ где $x_1={y_1}/{K},$ $y_1$ - размер популяции вредителей, $K$ - емкость среды.

    We get sufficient conditions for asymptotic stability and weak asymptotic stability of a given set $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ with respect to the control system with impulse actions. We assume that the function $t\mapsto M(t)$ is continuous in the Hausdorff metric and for each $t \in [t_0,+\infty)$ the set $M(t)$ is nonempty and closed. Also, we obtain conditions under which for every solution $x(t,x_0)$ of the control system that leaves a sufficiently small neighborhood of the set $M(t_0)$ there exists an instant $t^*$ such that point $(t,x(t,x_0))$ belongs to $\mathfrak M$ for all $t\in[t^*,+\infty).$ Some of the statements presented here are analogues of the results obtained by E.A. Panasenko and E.L.Tonkov for systems with impulses, and in other statements the specificity of impulse actions is essentially used. The results of this paper are illustrated by the “pest-bioagents” model with impulse control and we assume that the addition of bioagents (natural enemies of the given pests) occur at fixed instants of time and the number of pests consumed on average by one biological agent per unit time is given by the trophic Holling function. We obtain conditions for asymptotic stability of the set $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ where $x_1=y_1/K,$ $y_1$ is the size of the population of pests and $K$ is the capacity of environment.

  8. В данной статье исследуется проблема устойчивости в вариации решений неавтономных дифференциальных уравнений. Представлены некоторые новые достаточные условия асимптотической или экспоненциальной устойчивости для некоторых классов нелинейных нестационарных дифференциальных уравнений, использующие функции Ляпунова, которые не обязательно являются гладкими. Предлагаемый подход для анализа устойчивости основан на определении границ, характеризующих асимптотическую сходимость решений к некоторому замкнутому множеству, содержащему начало координат. Кроме того, приведены некоторые иллюстративные примеры, демонстрирующие справедливость основных результатов.

    In this paper, we investigate the problem of stability in variation of solutions for nonautonomous differential equations. Some new sufficient conditions for the asymptotic or exponential stability for some classes of nonlinear time-varying differential equations are presented by using Lyapunov functions that are not necessarily smooth. The proposed approach for stability analysis is based on the determination of the bounds that characterize the asymptotic convergence of the solutions to a certain closed set containing the origin. Furthermore, some illustrative examples are given to prove the validity of the main results.

  9. Для управляемых систем со случайными параметрами исследуются свойства статистической инвариантности и статистически слабой инвариантности, выполненные с вероятностью единица. Получены достаточные условия инвариантности заданного множества относительно управляемой системы, выраженные в терминах функций Ляпунова и динамической системы сдвигов. Доказано обобщение теоремы С.А. Чаплыгина о дифференциальных неравенствах и получены условия существования верхнего решения для задачи Коши с кусочно непрерывной по t правой частью без предположения единственности решения.

    We investigate the properties of statistical invariance and statistically weak invariance with probability one for control systems with random parameters. We obtain the sufficient conditions for the invariance of the given set with respect to the control system formulated in terms of Lyapunov functions and the dynamical system of shifts. We prove the extension for the theorem of S.A. Chaplygin about differential inequalities and obtain the conditions of existence for the upper solution of Cauchy problem with piecewise continuous on t right-hand part without assumption of uniqueness of solution.

  10. Рассматривается нелинейная механическая система, динамика которой описывается векторным дифференциальным уравнением типа Льенара. Предполагается, что коэффициенты данного уравнения могут переключаться с одного набора постоянных значений на другой, причем общее количество этих наборов, вообще говоря, бесконечное. Таким образом, для задания коэффициентов уравнения используются кусочно-постоянные функции с бесконечным числом точек разрыва на всей временной оси. Предлагается способ построения разрывной функции Ляпунова, с помощью которой исследуются достаточные условия асимптотической устойчивости нулевого положения равновесия изучаемого уравнения. Полученные результаты обобщаются на случай нестационарного уравнения Льенара с разрывными коэффициентами более общего вида. В качестве вспомогательного результата работы разрабатываются методы анализа вопроса знакоопределенности и подходы к получению оценок для алгебраических выражений, представляющих собой сумму слагаемых степенного вида с нестационарными коэффициентами. Ключевой особенностью исследования является отсутствие предположений об ограниченности указанных нестационарных коэффициентов или об их отделенности от нуля. Приводятся некоторые примеры, иллюстрирующие установленные результаты.

    A nonlinear mechanical system, whose dynamics is described by a vector ordinary differential equation of the Lienard type, is considered. It is assumed that the coefficients of the equation can switch from one set of constant values to another, and the total number of these sets is, in general, infinite. Thus, piecewise constant functions with infinite number of break points on the entire time axis, are used to set the coefficients of the equation. A method for constructing a discontinuous Lyapunov function is proposed, which is applied to obtain sufficient conditions of the asymptotic stability of the zero equilibrium position of the equation studied. The results found are generalized to the case of a nonstationary Lienard equation with discontinuous coefficients of a more general form. As an auxiliary result of the work, some methods for analyzing the question of sign-definiteness and approaches to obtaining estimates for algebraic expressions, that represent the sum of power-type terms with non-stationary coefficients, are developed. The key feature of the study is the absence of assumptions about the boundedness of these non-stationary coefficients or their separateness from zero. Some examples are given to illustrate the established results.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref