Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'asymptotic properties':
Найдено статей: 21
  1. В статье исследуются свойства функции цены задачи оптимального управления на бесконечном горизонте с неограниченным подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Выводится оценка аппроксимации функции цены в задаче с бесконечным горизонтом значениями функции цены в задачах с удлиняющимся конечным горизонтом. Выявляется структура функции цены через значения стационарной функции цены, зависящей только от фазовой переменной. Дается описание асимптотики роста значений функции цены для функционалов качества различного вида, принятых в экономическом и финансовом моделировании: логарифмических, степенных, экспоненциальных, линейных. Устанавливается свойство непрерывности функции цены и выводятся оценки гёльдеровских параметров непрерывности. Полученные оценки необходимы для разработки сеточных алгоритмов построения функций цены в задачах оптимального управления с бесконечным горизонтом.

    The article investigates properties of the value function of the optimal control problem on infinite horizon with an unlimited integrand index appearing in the quality functional with a discount factor. The estimate is derived for approximating the value function in a problem with the infinite horizon by levels of value functions in problems with lengthening finite horizons. The structure of the value function is identified basing on stationary value functions which depend only on phase variables. The description is given for the asymptotic growth of the value function generated by various types of the quality functional applied in economic and financial modeling: logarithmic, power, exponential, linear functions. The property of continuity is specified for the value function and estimates are deduced for the Hölder parameters of continuity. These estimates are needed for the development of grid algorithms designed for construction of the value function in optimal control problems with infinite horizon.

  2. Рассматривается линейная управляемая система с неполной обратной связью с дискретным временем

    x(t+1)=A(t)x(t)+B(t)u(t),   y(t)=C*(t)x(t),   u(t)=U(t)y(t),   t∈Z.

    Исследуется задача управления асимптотическим поведением замкнутой системы

    x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn.                (1)

    Здесь K=C или K=R. Для такой системы вводится понятие согласованности. Это понятие является обобщением понятия полной управляемости на системы с неполной обратной связью. Исследовано свойство согласованности системы (1), получены новые необходимые условия и достаточные условия согласованности системы (1), в том числе в стационарном случае. Для стационарной системы вида (1) исследуется задача о глобальном управлении спектром собственных значений, которая заключается в приведении характеристического многочлена матрицы стационарной системы (1) с помощью стационарного управления U к произвольному наперед заданному полиному. Для системы (1) с постоянными коэффициентами специального вида, когда матрица A имеет форму Хессенберга, а в матрицах B и C все строки соответственно до p-й и после p-й (не включая p) равны нулю, свойство согласованности является достаточным условием глобальной управляемости спектра собственных значений. Ранее было доказано, что обратное утверждение верно для n<4 и неверно для n>5. В настоящей работе доказано, что обратное утверждение верно для n=4.

    We consider a discrete-time linear control system with an incomplete feedback

    x(t+1)=A(t)x(t)+B(t)u(t),   y(t)=C*(t)x(t),   u(t)=U(t)y(t),   t∈Z.

    We study the problem of control over the asymptotic behavior of the closed-loop system

    x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn.               (1)

    where K=C or K=R. For the above system, we introduce the concept of consistency, which is a generalization of the concept of complete controllability onto systems with an incomplete feedback. The focus is on the consistency property of the system (1). We have obtained new necessary conditions and sufficient conditions for the consistency of the above system including the case when the system is time-invariant. For the time-invariant system (1), we study the problem of arbitrary placement of eigenvalue spectrum. The objective is to reduce a characteristic polynomial of a matrix of the stationary system (1) to any prescribed polynomial by means of the time-invariant control U. For the system (1) with constant coefficients of the special form where the matrix A is Hessenberg, the rows of the matrix B before the p-th and the rows of the matrix C after the p-th are equal to zero (not including p), the property of consistency is the sufficient condition for arbitrary placement of eigenvalue spectrum. It has been proved that the converse proposition is true for n<4 and false for n>5. In present paper we prove that the converse proposition is true for n=4.

  3. Понятие равномерной полной управляемости линейной системы, введенное Р. Калманом, играет ключевую роль в задачах управления асимптотическими характеристиками линейных систем управления, замкнутых по принципу линейной обратной связи. Е.Л. Тонков установил необходимое и достаточное условие равномерной полной управляемости для систем с кусочно-непрерывными и ограниченными коэффициентами. Критерий Тонкова можно положить в основу определения равномерной полной управляемости. Если условия на коэффициенты системы ослабить, то определения Калмана и Тонкова перестают совпадать. Здесь установлены необходимые условия и достаточные условия равномерной полной управляемости по Калману и по Тонкову для систем с измеримыми, локально суммируемыми коэффициентами. Введено определение равномерной полной управляемости, которое обобщает определение Тонкова и совпадает с определением Калмана, если матрица $B(\cdot)$ ограничена. Доказаны некоторые известные результаты об управляемости линейных систем, в которых можно ослабить требования на коэффициенты. Доказано, что если линейная управляемая система $\dot x=A(t)x+B(t)u$, $x\in\mathbb{R}^n$, $u\in\mathbb{R}^m$, с измеримой ограниченной матрицей $B(\cdot)$ равномерно вполне управляема в смысле Калмана, то для любой измеримой и интегрально ограниченной $m\times n$-матричной функции $Q(\cdot)$ система $\dot x=(A(t)+B(t)Q(t))x+B(t)u$ равномерно вполне управляема по Калману.

    The notion of uniform complete controllability of linear system introduced by R. Kalman plays a key role in problems of control of asymptotic properties for linear systems closed by linear feedback control. E.L. Tonkov has found a necessary and sufficient condition of uniform complete controllability for systems with piecewise continuous and bounded coefficients. The Tonkov criterion can be considered as the definition of uniform complete controllability. If the coefficients of the system satisfy weak conditions then the definitions of Kalman and Tonkov are not coincide. We obtain necessary conditions and sufficient conditions for uniform complete controllability in the sense of Kalman and Tonkov for systems with measurable and locally integrable coefficients. We introduce a new definition of uniform complete controllability that extends the definition of Tonkov and coincides with the definition of Kalman providing the matrix $B(\cdot)$ is bounded. We prove some known results on the controllability of linear systems that allow the weakening of the requirements on the coefficients. We prove that if a linear control system $\dot x=A(t)x+B(t)u$, $x\in\mathbb{R}^n$, $u\in\mathbb{R}^m$, with measurable and bounded matrix $B(\cdot)$ is uniformly completely controllable in the sense of Kalman then for any measurable and integrally bounded $m\times n$-matrix function $Q(\cdot)$ the system $\dot x=(A(t)+B(t)Q(t))x+B(t)u$ is also uniformly completely controllable in the sense of Kalman.

  4. Настоящая работа посвящена исследованию асимптотических свойств числа серий в последовательности дискретных случайных величин, управляемых цепью Маркова с конечным числом состояний. Состояние цепи на каждом шаге определяет закон распределения знаков в управляемой последовательности на этом шаге. Такая случайная последовательность представляет собой модель скрытой марковской цепи. При помощи метода Чена-Стена получена оценка расстояния по вариации между распределением числа серий длины не меньше заданной в случайной последовательности, управляемой цепью Маркова, и сопровождающим распределением Пуассона. Для ее вывода сначала рассматривалась последовательность из независимых неоднородных полиномиальных случайных величин, а затем использован прием, позволяющий получить оценку расстояния по вариации между смешанным пуассоновским распределением и пуассоновским распределением с параметром, равным среднему числу серий длины не меньше заданной. Эта оценка строится на основе дисперсии параметра смешанного пуассоновского распределения и выведенной ранее оценки для расстояния по вариации для полиномиальной схемы. Отдельно рассмотрен случай стационарной цепи Маркова. При помощи полученных оценок доказаны пуассоновская и нормальная предельные теоремы для числа серий длины не меньше заданной, а также найдено предельное распределение для наибольшей длины серии в управляемой случайной последовательности.

    The present paper is devoted to studying the asymptotic properties of a number of runs in the sequence of discrete random variables controlled by Markov chain with a finite number of states. A chain state at each step determines the law of characters distribution in the controlled sequence at this step. This random sequence represents a model of hidden Markov chain. Using Chen-Stein method we estimate the total variation distance between the distribution of the number of runs with length not less than predetermined length in the random sequence controlled by Markov chain and the accompanying Poisson distribution. For this purpose we first consider the sequence of independent inhomogeneous polynomial random variables, and then we use an approach which allows to get the estimate for total variation distance between mixed Poisson distribution and Poisson distribution with the parameter which equals to an average number of runs with length not less than predetermined. The estimate is based on both the variance of the mixed Poisson distribution parameter and the estimate obtained earlier for the total variation distance for the polynomial scheme. Separately we consider the case of a stationary Markov chain. Using derived estimates we investigate Poisson and normal limit theorems for the number of runs with length not less than predetermined, as well as the limit distribution for the maximal run length in a controlled sequence.

  5. В данной статье изучена задача Келдыша для трехмерного уравнения смешанного типа с тремя сингулярными коэффициентами в полубесконечном параллелепипеде. На основании свойства полноты систем собственных функций двух одномерных спектральных задач доказана теорема единственности. Для доказательства существования решения задачи использован спектральный метод Фурье, основанный на разделении переменных. Решение поставленной задачи построено в виде суммы двойного ряда Фурье-Бесселя. При обосновании равномерной сходимости построенного ряда использованы асимптотические оценки функций Бесселя действительного и мнимого аргумента. На их основе получены оценки для каждого члена ряда, позволившие доказать сходимость ряда и его производных до второго порядка включительно, а также теорему существования в классе регулярных решений.

    This article studies the Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients in a semi-infinite parallelepiped. Based on the completeness property of eigenfunction systems of two one-dimensional spectral problems, the uniqueness theorem is proved. To prove the existence of a solution to the problem, the Fourier spectral method based on the separation of variables is used. The solution to this problem is constructed in the form of a sum of a double Fourier-Bessel series. In substantiating the uniform convergence of the constructed series, we used asymptotic estimates of the Bessel functions of the real and imaginary argument. Based on them, estimates were obtained for each member of the series, which made it possible to prove the convergence of the series and its derivatives to the second order inclusive, as well as the existence theorem in the class of regular solutions

  6. Ряд задач в теории характеристических показателей Ляпунова линейных дифференциальных систем

    =A(t)x,    x∈Rn,    t≥0,

    сводится к изучению влияния возмущений коэффициентов на характеристические показатели и другие асимптотические инварианты возмущенных систем

    =A(t)y+Q(t)y,    y∈Rn,    t≥0.

    При этом возмущения коэффициентов предполагаются принадлежащими некоторым классам малости, то есть определенным подмножествам множества KCn(R+) кусочно-непрерывных и ограниченных на положительной полуоси n×n-матриц. Обычно используемые классы возмущений, например бесконечно малые (исчезающие в бесконечности), экспоненциально убывающие либо суммируемые на полуоси, задаются конкретными аналитическими условиями, но общее определение класса малости в теории показателей отсутствует. На основе анализа свойств общепринятых классов малости нами предложено аксиоматическое определение класса малости возмущений коэффициентов линейных дифференциальных систем, которому удовлетворяет большинство таких классов, используемых в теории характеристических показателей. Это определение достаточно громоздко. Для более компактной характеристики классов малости предложено использовать следующее их свойство: множество возмущений удовлетворяет предложенному определению класса малости тогда и только тогда, когда оно является полной матричной алгеброй над произвольным нетривиальным идеалом кольца функций KC1(R+) (с поточечным умножением), содержащим хотя бы одну строго положительную функцию.

    A number of problems in the Lyapunov exponent theory of linear differential systems

    =A(t)x,    x∈Rn,    t≥0,

    can be reduced to an investigation of the influence of coefficient perturbations on characteristic exponents and other asymptotic invariants of perturbed systems

    =A(t)y+Q(t)y,    y∈Rn,    t≥0.

    Here perturbations are assumed to be in some classes of smallness, i.e. certain subsets of the space KCn(R+) of piecewise continuous and bounded on the positive semiaxis n×n-matrices. Commonly used classes of perturbations, such as infinitesimal (vanishing at infinity), exponentially decaying or integrable on the positive semiaxis are defined by specific analytical conditions, but there is no general definition of the smallness class. By analyzing the desirable properties of commonly used classes, we propose an axiomatic definition for this notion, such that most of classes used in the theory of characteristic exponents satisfy this definition. Since the axioms are somewhat cumbersome, for more compact characterization we propose to use the following property of smallness classes: the set of perturbation satisfies the proposed definition if and only if it is a complete matrix algebra over an arbitrary non-trivial ideal of functional ring KC1(R+) (with the pointwise multiplication) containing at least one strictly positive function.

  7. Работа посвящена исследованию свойств асимптотической устойчивости решений линейной системы дифференциальных уравнений с обобщенным воздействием в матрице системы и запаздыванием в фазовых координатах.

    The article devoted to the study of asymptotic stability properties of solutions of linear system of differential equations with generalized action in the matrix system and delay in the phase coordinates.

  8. В последние два десятилетия углеродные нанотрубки активно исследуются в физической литературе, что обусловлено многообещающими перспективами их применения в микроэлектронике; в то же время интересные математические свойства используемых при этом гамильтонианов, к сожалению, часто остаются без должного внимания математиков. В настоящей статье проведено математически строгое исследование спектральных свойств гамильтониана $H_{\varepsilon}=H_0+\varepsilon V$ где гамильтониан электрона в углеродной нанотрубке типа «зигзаг» $H_0$ записан в приближении сильной связи, а оператор $\varepsilon V$ (потенциал) имеет вид

    $$(\varepsilon V\psi )(n)=\varepsilon { V_1\psi _1(n)\choose V_2\psi _2(n)}\delta_{n0}$$

    здесь $\varepsilon >0$, $V_1,V_2$ - вещественные числа, $\delta_{n0}$ - символ Кронекера. Гамильтониан $H_{\varepsilon}$ отвечает углеродной нанотрубке с примесью, равномерно распределенной в сечении нанотрубки. Данный гамильтониан является разностным оператором, определенным на функциях из $(l^2(\Omega ))^2$, где $\Omega =\mathbb Z\times \{ 0,1,\ldots,N-1\}$, $N\geqslant 2$, удовлетворяющих периодическим граничным условиям. В статье, в частности, доказано, что для каждой подзоны спектра вблизи одной из граничных точек подзоны в случае малых потенциалов существует ровно один квазиуровень, то есть собственное значение или резонанс. Для квазиуровней получены асимптотические формулы вида

    $$\lambda _l^{\pm}= \pm \Bigl|2\cos\frac{\pi l}{N}+1\Bigr|\cdot\Bigl(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}{N}}\Bigr)
    +O(\varepsilon^3),$$

    где $l$ - номер подзоны, $N$ - число атомов в сечении нанотрубки, $\pm$ - знак $\lambda$. Также найдено условие того, когда квазиуровень является собственным значением.

     

    Morozova L.E., Chuburin Y.P.
    Quasi-levels of the Hamiltonian for a carbon nanotube, pp. 76-83

    In the past two decades, carbon nanotubes have been actively investigated in the physics literature, because of the promising prospects for their use in microelectronics; at the same time, interesting mathematical properties of used Hamiltonians, unfortunately, are often overlooked by mathematicians. In this paper, we carry out the mathematically rigorous investigation of spectral properties of the Hamiltonian $H_{\varepsilon}=H_0+\varepsilon V$, where the Hamiltonian $H_0$ of an electron in a zigzag carbon nanotube is written in the tight-binding approach, and the operator $\varepsilon V$ (potential) has the form

    $$(\varepsilon V\psi )(n)=\varepsilon { V_1\psi _1(n)\choose V_2\psi _2(n)}\delta_{n0}$$

    (here $\varepsilon >0$, $V_1,V_2$ are real numbers, $\delta_{n0}$ is the Kronecker delta). The Hamiltonian $H_{\varepsilon}$ corresponds to the carbon nanotube with an impurity uniformly distributed over the cross section of the nanotube. This Hamiltonian is the difference operator defined on functions from $(l^2(\Omega ))^2$, where $\Omega =\mathbb Z\times \{ 0,1,\ldots,N-1\}$, $N\geqslant 2$, satisfying the periodic boundary conditions. In particular, in this paper we prove that for each subband of the spectrum near one of the boundary points of the subband exactly one quasilevel (i.e. eigenvalue or resonance) exists in the case of small potentials. For quasilevels, the asymptotic formulas of the form

    $$\lambda _l^{\pm}= \pm \Bigl|2\cos\frac{\pi l}{N}+1\Bigr|\cdot\Bigl(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}{N}}\Bigr)
    +O(\varepsilon^3),$$

    are obtained, where $l$ is the subband number, $N$ is the number of atoms in the cross section of the nanotube, and $\pm$ is the sign of the $\lambda$. Also, we find the condition when a quasilevel is an eigenvalue.

     

  9. В работе рассматривается дифференциальное уравнение типа Эмдена-Фаулера второго порядка с отрицательными потенциалом $y'' - p(x, y, y') |y|^k \text{ sgn } y=0$ в случае регулярной нелинейности $k>1$. Предполагается, что функция $p(x, u, v)$ положительна, непрерывна по $x$ и удовлетворяет условию Липшица по последним двум аргументам. Исследуется асимптотическое поведение максимально продолженных решений рассматриваемого уравнения. Изучается случай неограниченной сверху и отделенной от нуля снизу функции $p(x, u, v)$. Получены условия существования вертикальной асимптоты у всех нетривиальных максимально продолженных решений уравнения. Кроме того, получены достаточные условия, при которых все нетривиальные максимально продолженные решения уравнения обладают свойством $\displaystyle \lim_{x \to a} |y'(x)| = +\infty$, $\displaystyle \lim_{x \to a} |y(x)| < + \infty$, где $a$ - граничная точка области определения.

    In this paper we consider the second-order Emden-Fowler type differential equation with negative potential $y''-p(x, y, y') |y|^k \text{ sgn } y=0$ in case of regular nonlinearity $k>1$. We assume that the function $p(x, u, v)$ is continuous in $x$ and Lipschitz continuous in two last variables. We investigate asymptotic behaviour of non-extensible solutions to the equation above. We consider the case of a positive function $p(x, u, v)$ unbounded from above and bounded away from 0 from below. The conditions guaranteeing an existence of a vertical asymptote of all nontrivial non-extensible solutions to the equation are obtained. Also the sufficient conditions providing the following solutions' properties $\displaystyle \lim_{x \to a} |y'(x)| = +\infty$, $\displaystyle \lim_{x \to a} |y(x)| <+ \infty$, where $a < \infty$ is a boundary point, are obtained.

  10. Исследуются спектральные свойства дискретного оператора Шредингера для бесконечной полосы с нулевыми граничными условиями. Доказано, что для малых убывающих потенциалов вблизи особенностей невозмущенной функции Грина (граничных точек подзон) возникают собственные значения и резонансы, найдена их асимптотика. Описана картина рассеяния; явление дифракции (рассеяние, главным образом, по конечному числу выделенных направлений) трансформируется в рассматриваемой квазиодномерной системе в волны во времени вероятностей прохождения и отражения. Получены простые формулы для данных вероятностей вблизи граничных точек подзон (это отвечает малым скоростям квантовой частицы) в случае малых потенциалов.

    Tinyukova T.S., Chuburin Y.P.
    The discrete Schrödinger equation for a quantum waveguide, pp. 80-93

    We investigate the spectral properties of the discrete Schrödinger operator for the infinite band with zero boundary conditions. We prove that the eigenvalues and resonances arise for the small decreasing potentials near singularities of the non-perturbed Green function (boundary points of the subbands) and we find their asymptotic behavior. The scattering picture is described: the diffraction (i.e. the scattering mainly in the finite number of preferential directions) transforms into probability waves in time of the reflection and propagation in the considered quasi-1D system. The simple formulas for these probabilities are obtained near boundary points of the subbands (this corresponds to small velocities of the quantum particles) for the small potentials.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref