Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Для билинейной управляемой системы с периодическими коэффициентами получены достаточные условия равномерной глобальной асимптотической стабилизации нулевого решения. Доказательство основано на применении теоремы Красовского об асимптотической устойчивости в целом нулевого решения для периодических систем. Стабилизирующее управление построено по принципу обратной связи. Оно имеет вид квадратичной формы от фазовой переменной и является периодическим по времени.
глобальная асимптотическая устойчивость, стабилизация, функция Ляпунова, билинейные системы, периодические системы.Sufficient conditions for uniform global asymptotic stabilization of the origin are obtained for bilinear control systems with periodic coefficients. The proof is based on the use of the Krasovsky theorem on global asymptotic stability of the origin for periodic systems. The stabilizing control function is feedback control constructed as the quadratic form of the phase variables and depends on time periodically.
-
Рассматривается линейная управляемая система с неполной обратной связью с дискретным временем
x(t+1)=A(t)x(t)+B(t)u(t), y(t)=C*(t)x(t), u(t)=U(t)y(t), t∈Z.
Исследуется задача управления асимптотическим поведением замкнутой системы
x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn. (1)
Здесь K=C или K=R. Для такой системы вводится понятие согласованности. Это понятие является обобщением понятия полной управляемости на системы с неполной обратной связью. Исследовано свойство согласованности системы (1), получены новые необходимые условия и достаточные условия согласованности системы (1), в том числе в стационарном случае. Для стационарной системы вида (1) исследуется задача о глобальном управлении спектром собственных значений, которая заключается в приведении характеристического многочлена матрицы стационарной системы (1) с помощью стационарного управления U к произвольному наперед заданному полиному. Для системы (1) с постоянными коэффициентами специального вида, когда матрица A имеет форму Хессенберга, а в матрицах B и C все строки соответственно до p-й и после p-й (не включая p) равны нулю, свойство согласованности является достаточным условием глобальной управляемости спектра собственных значений. Ранее было доказано, что обратное утверждение верно для n<4 и неверно для n>5. В настоящей работе доказано, что обратное утверждение верно для n=4.
линейная управляемая система, неполная обратная связь, согласованность, управление спектром, стабилизация, дискретная системаWe consider a discrete-time linear control system with an incomplete feedback
x(t+1)=A(t)x(t)+B(t)u(t), y(t)=C*(t)x(t), u(t)=U(t)y(t), t∈Z.
We study the problem of control over the asymptotic behavior of the closed-loop system
x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn. (1)
where K=C or K=R. For the above system, we introduce the concept of consistency, which is a generalization of the concept of complete controllability onto systems with an incomplete feedback. The focus is on the consistency property of the system (1). We have obtained new necessary conditions and sufficient conditions for the consistency of the above system including the case when the system is time-invariant. For the time-invariant system (1), we study the problem of arbitrary placement of eigenvalue spectrum. The objective is to reduce a characteristic polynomial of a matrix of the stationary system (1) to any prescribed polynomial by means of the time-invariant control U. For the system (1) with constant coefficients of the special form where the matrix A is Hessenberg, the rows of the matrix B before the p-th and the rows of the matrix C after the p-th are equal to zero (not including p), the property of consistency is the sufficient condition for arbitrary placement of eigenvalue spectrum. It has been proved that the converse proposition is true for n<4 and false for n>5. In present paper we prove that the converse proposition is true for n=4.
-
Бифуркации в системе Рэлея с диффузией, с. 499-514Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.
Bifurcations in a Rayleigh reaction-diffusion system, pp. 499-514We consider a reaction-diffusion system with a cubic nonlinear term, which is a special case of the Fitzhugh-Nagumo system and an infinite-dimensional version of the classical Rayleigh system. We assume that the spatial variable belongs to an interval, supplemented with Neumann boundary conditions. It is well-known that in that specific case there exists a spatially-homogeneous oscillatory regime, which coincides with the time-periodic solution of the classical Rayleigh system. We show that there exists a countable set of critical values of the control parameter, where each critical value corresponds to the branching of new spatially-inhomogeneous auto-oscillatory or stationary regimes. These regimes are stable with respect to small perturbations from some infinite-dimensional invariant subspaces of the system under study. This, in particular, explains the convergence of numerical solution to zero, periodic or stationary solution, which is observed for some specific initial conditions and control parameter values. We construct the asymptotics for branching solutions by using Lyapunov-Schmidt reduction. We find explicitly the first terms of asymptotic expansions and study the formulas for general terms of asymptotics. It is shown that a soft loss of stability occurs in invariant subspaces. We study numerically the evolution of secondary regimes due to the increase of control parameter values and observe that the secondary periodic solutions are transformed into stationary ones as the control parameter value increases. Next, the amplitude of stationary solutions continues to grow and the solution asymptotically converges to the square wave regime.
-
Для данного уравнения рассмотрена периодическая краевая задача. У задачи существует счетное число периодических по временной переменной плоских волн. Исследован вопрос об их устойчивости и бифуркациях. Все результаты получены аналитически и основаны на асимптотических методах нелинейной динамики.
Bifurcation of autowaves of generalized cubic Schrödinger equation with three independent variables, pp. 23-34Periodic boundary value problem the name of which is given in the title of this article is considered in this work. There is a countable number of plane waves which are periodic on according to time variable. The question of their stability and bifurcation has been examined. Each of them turned out to bifurcate invariant tors of 2,3,4 dimensions, including asymptotically stable ones. Features which make them different from the analogous problem when the number of space variables equals 1 or 2 are also shown. In particular we have shown parameter ranges when precritic bifurcation of saddle tors is possible and revealed the cases of realization of stable regimes with sharpening the latter is illustrated by figures. All these results have been obtained analytically and are based on asymptotic methods of nonlinear dynamic.
-
Рассматривается обобщенное уравнение Курамото-Сивашинского в случае, когда неизвестная функция зависит от двух пространственных переменных. Такой вариант данного уравнения используется в качестве математической модели формирования неоднородного рельефа на поверхности полупроводников под воздействием потока ионов. В работе данное уравнение изучается вместе с однородными краевыми условиями Неймана в трех областях: прямоугольнике, квадрате и равнобедренном треугольнике. Изучен вопрос о локальных бифуркациях при смене устойчивости пространственно однородными состояниями равновесия. Показано, что в данных трех краевых задачах реализуются послекритические бифуркации и в их результате в каждой из трех изучаемых краевых задач бифурцируют пространственно неоднородные решения. Для них получены асимптотические формулы. Выявлена зависимость характера бифуркаций от выбора, геометрии области. В частности, определен вид зависимости от пространственных переменных. Изучен вопрос об устойчивости, в смысле определения А.М. Ляпунова, найденных пространственно неоднородных решений. Анализ бифуркационных задач использовал известные методы теории динамических систем с бесконечномерным фазовым пространством: интегральных (инвариантных) многообразий, нормальных форм Пуанкаре-Дюлака в сочетании с асимптотическими методами.
On the influence of the geometric characteristics of the region on nanorelief structure, pp. 293-304The generalized Kuramoto-Sivashinsky equation in the case when the unknown function depends on two spatial variables is considered. This version of the equation is used as a mathematical model of formation of nonhomogeneous relief on a surface of semiconductors under ion beam. This equation is studied along with homogeneous Neumann boundary conditions in three regions: a rectangle, a square, and an isosceles triangle. The problem of local bifurcations in the case when spatially homogeneous equilibrium states change stability is studied. It is shown that for these three boundary value problems post-critical bifurcations occur and, as a result, spatially nonhomogeneous solutions bifurcate in each of these boundary value problems. For them asymptotic formulas are obtained. The dependence of the nature of bifurcations on the choice and geometry of the region is revealed. In particular, the type of dependence on spatial variables is determined. The problem of Lyapunov stability of spatially nonhomogeneous solutions is studied. Well-known methods from dynamical systems theory with an infinite-dimensional phase space: integral (invariant) manifolds, normal Poincare-Dulac forms in combination with asymptotic methods are used to analyze the bifurcation problems.
-
Вычисляется второй член асимптотики преобразования монодромии монодромной особой точки для некоторого класса векторных полей на плоскости, диаграмма Ньютона которых состоит из двух четных ребер. В таком случае главный член преобразования монодромии тождественен. Полученный результат дает достаточное условие фокуса для особой точки из рассматриваемого класса.
Stability of monodromic singular points of planar dynamical systems with a fixed Newton diagram, pp. 34-49The second term of asymptotics of the monodromy map of the monodromic singular point is calculated for some class of vector fields in the plane with the Newton diagram having two even edges. In this case the principal term of the monodromy map is identical. The result obtained gives the sufficient condition for a singular point to be a focus.
-
Получены достаточные условия асимптотической устойчивости и слабой асимптотической устойчивости заданного множества $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ относительно управляемой системы с импульсным воздействием в предположении, что функция $t\mapsto M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и замкнуто. Также получены условия, при которых для каждого решения $x(t,x_0)$ управляемой системы, выходящего из достаточно малой окрестности множества $M(t_0),$ найдется момент времени $t^*$ такой, что точка $(t,x(t,x_0))$ принадлежит $\mathfrak M$ при всех $t\in [t^*,+\infty).$ Некоторые из представленных здесь утверждений являются аналогами результатов Е.А. Панасенко и Е.Л. Тонкова для систем с импульсами, в других утверждениях существенно используется специфика импульсного воздействия. Результаты работы проиллюстрированы на примере модели «вредитель-биоагент» с импульсным управлением в предположении, что вбросы биоагентов (природных врагов данных вредителей) происходят в фиксированные моменты времени и количество вредителей, потребляемых в среднем одним биоагентом за единицу времени, задается трофической функцией Холлинга. Получены условия асимптотической устойчивости множества $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ где $x_1={y_1}/{K},$ $y_1$ - размер популяции вредителей, $K$ - емкость среды.
управляемые системы с импульсным воздействием, функции Ляпунова, асимптотически устойчивые множестваWe get sufficient conditions for asymptotic stability and weak asymptotic stability of a given set $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ with respect to the control system with impulse actions. We assume that the function $t\mapsto M(t)$ is continuous in the Hausdorff metric and for each $t \in [t_0,+\infty)$ the set $M(t)$ is nonempty and closed. Also, we obtain conditions under which for every solution $x(t,x_0)$ of the control system that leaves a sufficiently small neighborhood of the set $M(t_0)$ there exists an instant $t^*$ such that point $(t,x(t,x_0))$ belongs to $\mathfrak M$ for all $t\in[t^*,+\infty).$ Some of the statements presented here are analogues of the results obtained by E.A. Panasenko and E.L.Tonkov for systems with impulses, and in other statements the specificity of impulse actions is essentially used. The results of this paper are illustrated by the “pest-bioagents” model with impulse control and we assume that the addition of bioagents (natural enemies of the given pests) occur at fixed instants of time and the number of pests consumed on average by one biological agent per unit time is given by the trophic Holling function. We obtain conditions for asymptotic stability of the set $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ where $x_1=y_1/K,$ $y_1$ is the size of the population of pests and $K$ is the capacity of environment.
-
Рассматривается одна из версий обобщенного вариационного уравнения Гинзбурга-Ландау, дополненная периодическими краевыми условиями. Для такой краевой задачи изучен вопрос о существовании, устойчивости и локальных бифуркациях одномодовых состояний равновесия. Показано, что в случае близком к критическому трехкратного нулевого собственного значения в задаче об устойчивости одномодовых пространственно неоднородных состояний равновесия реализуются докритические бифуркации двумерных инвариантных торов, заполненных пространственно неоднородными состояниями равновесия. Анализ поставленной задачи опирается на такие методы теории бесконечномерных динамических систем как теория инвариантных многообразий и аппарат нормальных форм. Для решений, формирующих инвариантные торы, получены асимптотические формулы.
вариационное уравнение Гинзбурга-Ландау, краевая задача, устойчивость, бифуркации, асимптотические формулы
Stability and local bifurcations of single-mode equilibrium states of the Ginzburg-Landau variational equation, pp. 240-258One of the versions of the generalized variational Ginzburg-Landau equation is considered, supplemented by periodic boundary conditions. For such a boundary value problem, the question of existence, stability, and local bifurcations of single-mode equilibrium states is studied. It is shown that in the case of a nearly critical threefold zero eigenvalue, in the problem of stability of single-mode spatially inhomogeneous equilibrium states, subcritical bifurcations of two-dimensional invariant tori filled with spatially inhomogeneous equilibrium states are realized. The analysis of the stated problem is based on such methods of the theory of infinite-dimensional dynamical systems as the theory of invariant manifolds and the apparatus of normal forms. Asymptotic formulas are obtained for the solutions that form invariant tori.
-
В данной статье исследуется проблема устойчивости в вариации решений неавтономных дифференциальных уравнений. Представлены некоторые новые достаточные условия асимптотической или экспоненциальной устойчивости для некоторых классов нелинейных нестационарных дифференциальных уравнений, использующие функции Ляпунова, которые не обязательно являются гладкими. Предлагаемый подход для анализа устойчивости основан на определении границ, характеризующих асимптотическую сходимость решений к некоторому замкнутому множеству, содержащему начало координат. Кроме того, приведены некоторые иллюстративные примеры, демонстрирующие справедливость основных результатов.
On the stability in variation of non-autonomous differential equations with perturbations, pp. 222-247In this paper, we investigate the problem of stability in variation of solutions for nonautonomous differential equations. Some new sufficient conditions for the asymptotic or exponential stability for some classes of nonlinear time-varying differential equations are presented by using Lyapunov functions that are not necessarily smooth. The proposed approach for stability analysis is based on the determination of the bounds that characterize the asymptotic convergence of the solutions to a certain closed set containing the origin. Furthermore, some illustrative examples are given to prove the validity of the main results.
-
Об устойчивости линейных систем с импульсным воздействием в матрице системы и запаздыванием, с. 40-46Работа посвящена исследованию свойств асимптотической устойчивости решений линейной системы дифференциальных уравнений с обобщенным воздействием в матрице системы и запаздыванием в фазовых координатах.
The article devoted to the study of asymptotic stability properties of solutions of linear system of differential equations with generalized action in the matrix system and delay in the phase coordinates.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.