Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.
В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.
С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.
Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.
система квазилинейных уравнений, уравнение Гамильтона-Якоби-Беллмана, минимаксное/вязкостное решение, метод характеристикWe consider the Cauchy problem for the system of quasi-linear first order equations of a special form. The system is symmetric, the state variable is n-dimensional. The considered Cauchy problem is deduced from the Cauchy problem for the Hamilton-Jacobi-Bellman equation by means of the operation of differentiation of this equation and the boundary condition with respect to the variable xi. It is assumed that the Hamiltonian and the initial condition are continuously differentiable functions. The Hamiltonian is convex with respect to the adjoint variable.
The paper presents a new approach to the definition of the generalized solution of the system of quasi-linear first order equations. The generalized solution belongs to the class of multivalued functions with convex compact values. We prove the existence, uniqueness and stability theorems. The semigroup property for the proposed generalized solution is obtained. It is shown that the potential for generalized solutions of quasi-linear equations coincides with the unique minimax/viscosity solution of the corresponding Cauchy problem for the Hamilton-Jacobi-Bellman equation, and at the points of differentiability of the minimax solution its gradient coincides with the generalized solution of the Cauchy problem. Properties of the generalized solutions of the Cauchy problem for a system of quasi-linear equations are obtained on the basis of this connection. In particular, it is shown that the introduced generalized solution coincides with the superdifferential of the minimax solution of the Cauchy problem and is singlevalued almost everywhere.
The structure of the set of points at which the minimax solution is not differentiable is described by using the characteristics of the Hamilton-Jacobi-Bellman equation.
It is shown that the property of the generalized solution of the quasilinear equation with a scalar state variable proposed by O.A. Oleinik, can be extended to the case of the system of quasi-linear equations under consideration.
-
Рассматривается периодический оператор Шредингера ĤA+V в Rn, n≥3. На векторный потенциал A накладываются ограничения, которые, в частности, выполнены, если потенциал A принадлежит классу Соболева Hqloc(Rn;Rn), 2q>n-1, а также в случае, когда Σ ||AN||Cn<+∞, где AN – коэффициенты Фурье потенциала A. Доказана абсолютная непрерывность спектра периодического оператора Шредингера ĤA+V для скалярных потенциалов V из пространства Морри L2,p(Rn), p∈((n-1)/2,n/2], для которых ||ΧBr(x)V||2,p≤ε0 при всех достаточно малых r>0 и всех x∈Rn, где число ε0=ε0(n,p;A)>0 зависит от векторного потенциала A, Br(x) – замкнутый шар радиуса r>0 с центром в точке x∈Rn, ΧΚ – характеристическая функция множества K⊆Rn, ||.||2,p –
норма в пространстве L2,p(Rn). Пусть K – элементарная ячейка решетки периодов потенциалов A и V, K* – элементарная ячейка обратной решетки. Оператор ĤA+V унитарно эквивалентен прямому интегралу операторов ĤA(k)+V, k∈2πK*, действующих в L2(K). Последние операторы рассматриваются также при комплексных векторах k+ik’∈Cn. При доказательстве абсолютной непрерывности спектра оператора ĤA+V используется метод Томаса и оценки резольвенты операторов ĤA(k+ik’)+V при определенным образом выбираемых комплексных векторах k+ik’∈Cn с достаточно большой мнимой частью k’.We consider the periodic Schrödinger operator ĤA+V in Rn, n≥3. The vector potential A is supposed to satisfy some conditions which are fullled whenever the potential A belongs to the Sobolev class Hqloc(Rn;Rn), 2q>n-1, and also in the case where Σ ||AN||Cn<+∞. Here AN are the Fourier coecients of the potentialA. We prove absolute continuity of the spectrum of the periodic Schrödinger operator ĤA+V provided that the scalar potential V belongs to the Morrey space L2,p(Rn), p∈((n-1)/2,n/2] and ||ΧBr(x)V||2,p≤ε0 for all suciently small r>0 and all x∈Rn, where the number ε0=ε0(n,p;A)>0 depends on the vector potential A, Br(x) is a closed ball of radius r>0 centered at the point x∈Rn, ΧΚ a characteristic function of a set K⊆Rn, ||.||2,p the norm in the space L2,p(Rn). Let K be the fundamental domain of the period lattice (which is common for the potentials A and V), K the fundamental domain of the reciprocal lattice. The operator ĤA+V is unitarily equivalent to the direct integral of operators ĤA(k)+V, k∈2πK*, acting on the space L2(K). The last operators are also considered for complex vectors k+ik’∈Cn. To prove absolute continuity of the spectrum of the operator ĤA+V, we use the Thomas method. The main ingredients in the proof are the inequalities for the resolvent of the operators ĤA(k+ik’)+V which hold for some appropriate chosen complex vectors k+ik’∈Cn with suciently large imaginary part k’.
-
Рассматриваются Cr-гладкие (r≥1) диффеоморфизмы многомерного пространства в себя с гиперболической неподвижной точкой и нетрансверсальной гомоклинической к ней точкой. Из работ Ш. Ньюхауса, Л.П. Шильникова, Б.Ф. Иванова и других авторов следует, что при определенном способе касания устойчивого и неустойчивого многообразий окрестность гомоклинической точки может содержать счетное множество устойчивых периодических точек, но по крайней мере один из характеристических показателей у таких точек стремится к нулю с ростом периода. В предлагаемой работе показано, что при определенных условиях, наложенных на характер касания устойчивого и неустойчивого многообразий, в окрестности нетрансверсальной гомоклинической точки лежит бесконечное множество устойчивых периодических точек, характеристические показатели которых отделены от нуля.
We regard Cr-smooth (r≥1) self-diffeomorphism of multidimensional space with a hyperbolic fixed point and non-transversal homoclinic point. In the works by Sh. Newhouse, L.P. Shil'nikov, B.F. Ivanov and other authors it is shown that under certain condition on the type of contact of stable and unstable manifolds, the neighborhoods of the homoclinic point may contain a countable set of stable periodic points, but at least one of their characterictic exponents tends to zero with the increase of a period. The goal of this work is to prove that under certain conditions imposed on the character of tangency between the stable and unstable manifolds, the neighborhood of the homoclinic point may contain an infinite set of stable periodic points whose characteristic exponents are negative and bounded away from zero.
-
Успокоение решения систем нейтрального типа с многими запаздываниями посредством обратной связи, с. 40-51В работе изучена следующая задача: для линейной автономной дифференциально-разностной системы нейтрального типа с запаздыванием в состоянии требуется обеспечить ее полное успокоение с помощью обратной связью. Для решения указанной задачи предложен линейный автономный динамический дифференциально-разностный регулятор типа обратной связи по состоянию, не выводящий замкнутую систему из исходного класса линейных автономных систем нейтрального типа. Достаточное условие существования такого регулятора совпадает с критерием полной управляемости. Кроме того, замкнутая система будет иметь конечный спектр, что существенно упрощает задачу вычисления текущего состояния в ходе технической реализации регулятора. Основная идея исследования заключается в выборе параметров регулятора так, чтобы замкнутая система стала точечно вырожденной в направлениях, отвечающих фазовым компонентам исходной (разомкнутой) системы. Для этого на начальном этапе исходная система обратной связью приводится к системе запаздывающего типа с одним входом. Далее для полученного объекта строится динамический регулятор, обеспечивающий вырождение соответствующих фазовых компонент.
Предложенная процедура построения управляющего воздействия базируется на алгебраических свойствах оператора сдвига и не предполагает вычисления корней характеристического квазиполинома исходной системы. Возможно ее использование для обеспечения замкнутой системе не только полного успокоения, но и экспоненциальной устойчивости. Однако в последнем случае возникает необходимость использовать динамические регуляторы с обратной связью по состоянию интегрального типа.
дифференциально-разностная система, нейтральный тип, полная управляемость, регулятор, обратная связь, точечная вырожденностьThis paper examines the following problem: a linear autonomous differential-difference system of neutral type with delay in state requires ensuring its complete calming by feedback. To solve this problem linear autonomous dynamic differential-difference controller with state feedback is proposed; this controller does not exclude a closed system from the original class of linear autonomous systems of neutral type. Sufficient condition for the existence of such a controller coincides with the criterion of complete controllability. In addition, the closed system has a finite spectrum, which simplifies greatly the problem of calculating the current state during the technical implementation of the controller. The basic idea of research is to select parameters for the controller so that the closed system becomes point-degenerated in directions corresponding to phase components of the original (open) system. To do this, the original system is first converted via feedback to the single-input system of retarded type. Further, for the resulting object the dynamic controller that provides the degeneracy of the corresponding phase components is constructed.
The proposed procedure for constructing the control action is based on the algebraic properties of shift operator and does not involve calculating the roots of characteristic quasipolynomial of the original system. It can be used to provide full calming as well as exponential stability to a closed system. However, in the latter case it is necessary to use dynamic controller with state feedback of integral type.
-
В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.
The Adler-van Moerbeke integrable case. Visualization of bifurcations of Liouville tori, pp. 532-539In this paper we consider an integrable Hamiltonian system on the Lie algebra $so(4)$ with an additional integral of the fourth degree - the Adler-van Moerbeke integrable case. We discuss classical works which explore, on the one hand, the dynamics of a rigid body with cavities completely filled with an ideal fluid performing a homogeneous vortex motion and, on the other hand, are devoted to the study of geodesic flows of left-invariant metrics on Lie groups. The equations of motion, the Hamiltonian function, Lie-Poisson brackets, Casimir functions and the phase space of the case under consideration are given. In previous papers, the investigation of the phase topology of the integrable Adler-van Moerbeke case was started: a spectral curve, a discriminant set and a bifurcation diagram of the moment map are explicitly shown, and characteristic exponents for determining the type of critical points of rank 0 and 1 of the moment map are presented. In this paper we present an algorithm for constructing Liouville tori. Examples are given of bifurcations of Liouville tori at the intersection of bifurcation curves for reconstructions of one torus into two tori and of two tori into two tori.
-
Рассматривается плоская модель курсового движения автомобиля, с двумя степенями свободы (боковое перемещение центра тяжести и курсовой угол). Управление осуществляется поворотом управляемых колес. Система рассматривается как замкнутая система автоматического регулирования. В статье рассматривается нахождение «оптимальной» передаточной характеристики, наилучшей в некотором определенном смысле для замкнутой системы. Анализируются возможные критерии оптимизации. Показано, что наиболее подходящим критерием для осуществления управления данным объектом является минимум функционала от отклонения от заданной траектории направляющей точки (точки, расположенной на продольной оси автомобиля впереди по направлению движения) и угла поворота управляемых колес.
A flat model of the motor car’s directional motion with two degrees of freedom (lateral motion of the center of gravity and relative bearing) is considered. The control is performed by turning steering wheels. The system is regarded as a closed automatic control system. The paper discusses finding an optimal transfer characteristic which in some definite sense is the best for the closed system. Possible criteria of optimization are analyzed. It is shown that the minimum of the functional from the off-path jogging of the guiding point (the point located on the longitudinal axis of a motor car ahead in the direction of motion) and the turning angle of the steering wheels is the most appropriate criterion for controlling this object.
-
О сингулярном интегральном уравнении Вольтерра краевой задачи теплопроводности в вырождающейся области, с. 241-252В работе рассматривается сингулярное интегральное уравнение типа Вольтерра второго рода, к которому методом тепловых потенциалов редуцируются некоторые граничные задачи теплопроводности в областях с границей, изменяющейся со временем. Особенность такого рода задач заключается в том, что область вырождается в точку в начальный момент времени. Соответственно, отличительной особенностью исследуемого интегрального уравнения является то, что интеграл от ядра, при стремлении верхнего предела интегрирования к нижнему не равен нулю. Данное обстоятельство не позволяет решить данное уравнение методом последовательных приближений. Построено общее решение соответствующего характеристического уравнения и методом равносильной регуляризации Карлемана–Векуа найдено решение полного интегрального уравнения. Показано, что соответствующее однородное интегральное уравнение имеет ненулевое решение.
интегральное уравнение, сингулярное интегральное уравнение типа Вольтерра второго рода, метод регуляризации Карлемана–Векуа
On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain, pp. 241-252In this paper, we consider a singular Volterra type integral equation of the second kind, to which some boundary value problems of heat conduction in domains with a boundary varying with time are reduced by the method of thermal potentials. The peculiarity of such problems is that the domain degenerates into a point at the initial moment of time. Accordingly, a distinctive feature of the integral equation under study is that the integral of the kernel, as the upper limit of integration tends to the lower one, is not equal to zero. This circumstance does not allow solving this equation by the method of successive approximations. We constructed the general solution of the corresponding characteristic equation and found the solution of the complete integral equation by the Carleman–Vekua method of equivalent regularization. It is shown that the corresponding homogeneous integral equation has a nonzero solution.
-
К решению неоднородных уравнений в частных производных с правой частью, заданной на сетке, с. 443-457Предлагается алгоритм получения решения уравнений в частных производных с правой частью, заданной на сетке $\{ (x_{1})_{\mu}, (x_{2})_{\mu}, \ldots, (x_{n})_{\mu}\},$ $(\mu=1,2,\ldots,N)\colon f_{\mu}=f((x_{1})_{\mu}, (x_{2})_{\mu}, \ldots, (x_{n})_{\mu}).$ Здесь $n$ — число независимых переменных в исходном уравнении в частных производных, $N$ — число строк в сетке для правой части, $f=f( x_{1}, x_{2}, \ldots, x_{n})$ — правая часть исходного уравнения. Алгоритм реализует редукцию исходного уравнения к системе обыкновенных дифференциальных уравнений (системе ОДУ) с начальными условиями в каждой точке сетки и включает следующую последовательность действий. Ищется решение исходного уравнения, зависящее от одной независимой переменной. Исходному уравнению ставится в соответствие некоторая система соотношений, содержащая произвольные функции и включающая уравнение в частных производных первого порядка. Для уравнения первого порядка выписывается расширенная система уравнений характеристик. Присоединяя к ней остальные соотношения, содержащие произвольные функции, и требуя, чтобы эти соотношения были первыми интегралами расширенной системы уравнений характеристик, приходим к искомой системе ОДУ, завершая редукцию. Предлагаемый алгоритм позволяет в каждой точке сетки находить решение исходного уравнения в частных производных, удовлетворяющее заданным начальным и краевым условиям. Алгоритм применяется для получения решений уравнения Пуассона и уравнения нестационарной осесимметричной фильтрации в точках сетки, на которой заданы правые части соответствующих уравнений.
уравнения в частных производных, решение начальных и краевых задач, расширенная система уравнений характеристик, редукция уравнений в частных производных к системам ОДУ
On solving non-homogeneous partial differential equations with right-hand side defined on the grid, pp. 443-457An algorithm is proposed for obtaining solutions of partial differential equations with right-hand side defined on the grid $\{ x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}\},\ (\mu=1,2,\ldots,N)\colon f_{\mu}=f(x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}).$ Here $n$ is the number of independent variables in the original partial differential equation, $N$ is the number of rows in the grid for the right-hand side, $f=f( x_{1}, x_{2}, \ldots, x_{n})$ is the right-hand of the original equation. The algorithm implements a reduction of the original equation to a system of ordinary differential equations (ODE system) with initial conditions at each grid point and includes the following sequence of actions. We seek a solution to the original equation, depending on one independent variable. The original equation is associated with a certain system of relations containing arbitrary functions and including the partial differential equation of the first order. For an equation of the first order, an extended system of equations of characteristics is written. Adding to it the remaining relations containing arbitrary functions, and demanding that these relations be the first integrals of the extended system of equations of characteristics, we arrive at the desired ODE system, completing the reduction. The proposed algorithm allows at each grid point to find a solution of the original partial differential equation that satisfies the given initial and boundary conditions. The algorithm is used to obtain solutions of the Poisson equation and the equation of unsteady axisymmetric filtering at the points of the grid on which the right-hand sides of the corresponding equations are given.
-
Тематика исследования данной работы находится на стыке двух направлений качественной теории дифференциальных уравнений — теории показателей Ляпунова и теории колеблемости. В настоящей работе исследуются различные разновидности показателей колеблемости (строгих и нестрогих) знаков решений линейных однородных дифференциальных уравнений третьего порядка с непрерывными на положительной полуоси коэффициентами. Конструктивно в работе построено многопараметрическое семейство дифференциальных уравнений третьего порядка, на котором реализуются различные соотношения между главными значениями показателей колеблемости. При фиксированных значениях последовательности параметров получаются точки из указанного семейства уравнений, в которых все главные значения показателей колеблемости не являются инвариантными относительно бесконечно малых возмущений (то есть исчезающих на бесконечности). Кроме того, на множестве всех ненулевых решений указанного семейства уравнений все показатели колеблемости совпадают между собой. При построении указанного уравнения и доказательстве требуемых результатов использованы аналитические методы качественной теории дифференциальных уравнений и методы теории возмущений решений линейных дифференциальных уравнений, в частности, метод варьирования уравнения.
дифференциальное уравнение, линейная система, колеблемость, число нулей, показатель колеблемости, характеристическая частота, показатель ЛяпуноваThe subject of the research of this work is at the intersection of two directions in the qualitative theory of differential equations — the theory of Lyapunov exponents and the theory of oscillation. In the present work, we investigate various types of oscillation exponents (strict and non-strict) of the signs of solutions of linear homogeneous differential equations of the third order with coefficients continuous on the positive semi-axis. Structurally, a multiparameter family of third-order differential equations is constructed in the work, on which various relationships between the main values of the oscillation exponents are realized. For fixed values of the sequence of parameters, points are obtained from the specified family of equations, in which all the main values of the oscillation exponents are not invariant with respect to infinitesimal perturbations (i.e., vanishing at infinity). In addition, on the set of all non-zero solutions of the specified family of equations, all oscillation exponents coincide with each other. When constructing the specified equation and proving the required results, analytical methods of the qualitative theory of differential equations and methods of perturbation theory of solutions of linear differential equations, in particular, the method of equation variation, were used.
-
Рассмотрен класс задач управления по быстродействию в трехмерном пространстве с шаровой вектограммой скоростей. В качестве целевого множества выбрана гладкая регулярная кривая $\Gamma.$ Выделены псевдовершины — характеристические точки на $\Gamma,$ отвечающие за возникновение сингулярности у функции оптимального результата. Выявлены характерные особенности структуры сингулярного множества, относящегося к семейству биссектрис. Найдено аналитическое представление для крайних точек биссектрисы, соответствующих фиксированной псевдовершине. В качестве иллюстрации эффективности развиваемых методов решения негладких динамических задач приведен пример численно-аналитического построения разрешающих конструкций задачи управления по быстродействию.
задача быстродействия, рассеивающая поверхность, биссектриса, псевдовершина, крайняя точка, кривизна, сингулярное множество, репер Френе
On the structure of the singular set of solutions in one class of 3D time-optimal control problems, pp. 471-486A class of time-optimal control problems in terms of speed in three-dimensional space with a spherical velocity vector is considered. A smooth regular curve $\Gamma$ was chosen as the target set. Pseudo-vertices — characteristic points on $\Gamma,$ responsible for the appearance of a singularity in the optimal result function, are selected. The characteristic features of the structure of a singular set belonging to the family of bisectors are revealed. An analytical representation is found for the extreme points of the bisector corresponding to a fixed pseudo-vertex. As an illustration of the effectiveness of the developed methods for solving nonsmooth dynamic problems, an example of the numerical-analytical construction of resolving structures of a control problem in terms of speed is given.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.