Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Об обобщенной краевой задаче для управляемой системы с обратной связью и бесконечным запаздыванием, с. 167-185Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.
система управления с обратной связью, оптимальное решение, дробное дифференциальное включение, бесконечное запаздывание, мера некомпактности, уплотняющий оператор, неподвижная точка, топологическая степень
On a generalized boundary value problem for a feedback control system with infinite delay, pp. 167-185We consider a non-local boundary value problem for a feedback control system described by a semilinear functional-differential inclusion of fractional order with infinite delay in a separable Banach space. The general principle of existence of solutions to the problem in terms of the difference from zero of the topological degree of the corresponding vector field is given. We prove a concrete example (Theorem 6) of the implementation of this general principle. The existence of an optimal solution to the posed problem is proved, which minimizes the given lower semicontinuous quality functional.
-
Построена метрика в пространстве clos(Rn) всех непустых замкнутых (необязательно ограниченных) подмножеств Rn. Сходимость последовательности множеств в этой метрике оказывается равносильной сходимости в метрике Хаусдорфа последовательности пересечений этих множеств с центрированными в нуле шарами любого положительного радиуса, дополненных соответствующими сферами. В этой метрике доказана полнота пространства clos(Rn) и замкнутость подпространства всех непустых замкнутых выпуклых подмножеств Rn. Получены условия равносильности сходимости по предложенной метрике и сходимости по метрикам Хаусдорфа и Хаусдорфа–Бебутова. Полученные результаты могут применяться в задачах управления, теории дифференциальных включений.
In the work, there is presented a new metric in the space clos(Rn) of all nonempty closed (not necessarily bounded) subsets of Rn. The convergence of sets in this metric is equivalent to convergence in the Hausdorff metric of the intersections of the given sets with the balls of any positive radius centered at zero united then with the corresponding spheres. It is proved that, with respect to the metric considered, the space clos(Rn) is complete, and its subspace of nonempty closed convex subsets of Rn is closed. There are also derived the conditions that guarantee the equivalence of convergence in this metric to convergence in the Hausdorff metric, and to convergence in the Hausdorff–Bebutov metric. The results obtained can be applied to studying control problems and differential inclusions.
-
Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.
оптимальное граничное управление, параболическое уравнение, секвенциальная оптимизация, двойственная регуляризация, устойчивость, поточечное фазовое ограничение в лебеговом пространстве, принцип Лагранжа, принцип максимума ПонтрягинаA convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.
-
Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.
Evasion from pursuers in a problem of group pursuit with fractional derivatives and phase constraints, pp. 309-314The paper deals with the problem of avoiding a group of pursuers in the finite-dimensional Euclidean space. The motion is described by the linear system of fractional order $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ where ${}^C D^{\alpha}_{0+}f$ is the Caputo derivative of order $\alpha\in(0,1)$ of the function $f$ and $A$ is a simple matrix. The initial positions are given at the initial time. The set of admissible controls of all players is a convex compact. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the evasion problem are obtained.
-
Позиционные стратегии в задачах управления средним полем на пространстве конечного числа состояний, с. 15-21Рассматривается задача оптимального управления системой бесконечного числа однотипных агентов. Пространство допустимых для агентов состояний является конечным. В рассматриваемой постановке имеется общий для всех агентов оптимизируемый функционал и общий центр управления, выбирающий стратегию для агентов. Предполагается, что выбираемая стратегия является позиционной. В настоящей работе рассматривается случай, когда динамика состояний агентов задается некоторой марковской цепью с непрерывным временем. Предполагается, что матрица Колмогорова этой цепи в каждом состоянии зависит от текущего состояния, выбранного управления и распределения всех агентов. Для такой задачи в работе показано, что решение в классе позиционных стратегий может быть построено на основе решения детерминированной задачи оптимального управления в конечномерном фазовом пространстве.
We consider an optimal control problem for an infinite amount of agents of the same type. We assume that agents have a finite state space. The given formulation of the problem involves an objective functional that is common for all agents and a common control center that chooses a strategy for agents. A chosen strategy is supposed to be positional. In this paper we consider a case when the dynamics of agents is given by a Markov chain with continuous time. It is assumed that the Kolmogorov matrix of this chain in each state depends on the current state, the chosen control and the distribution of all agents. For the original problem, it is shown that concerning positional strategies the solution can be obtained through the solution of the deterministic control problem in a finite-dimensional phase space.
-
В конечномерном нормированном пространстве рассматривается дискретная игровая задача фиксированной продолжительности. Терминальное множество определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. В данной работе построены оптимальные управления игроков. Проведено компьютерное моделирование игрового процесса. Рассмотрена модификация исходной задачи, в которой у первого игрока в неизвестный момент времени происходит изменение в динамике.
In a normed space of finite dimension a discrete game problem with fixed duration is considered. The terminal set is determined by the condition that the norm of the phase vector belongs to a segment with positive ends. In this paper, a set defined by this condition is called a ring. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is the opposite. In this paper, optimal controls of the players are constructed. Computer simulation of the game process is performed. A modification of the original problem, in which at an unknown time there is a change in the dynamics of the first player, is considered.
-
Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,L − n. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса y ∈ E. Критерий аппроксимации минимум величины ||y − ŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами α ∈ ω ⊂ S ⊂ En+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора y ∈ E есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.
вариационная идентификация, алгебраическая идентификация, кусочно–линейная динамическая аппроксимация, ортогональная регрессия, неградиентная оптимизацияSome properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients α ∈ ω ⊂ S ⊂ En+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.
-
Параллельный алгоритм приближенного построения множеств достижимости нелинейных управляемых систем, с. 459-472Статья посвящена исследованию эффективности применения технологии параллельных вычислений на многопроцессорных системах с общей памятью для задач приближенного расчета множеств достижимости нелинейных управляемых систем в конечномерном евклидовом пространстве. В рамках исследования предложен параллельный алгоритм приближенного построения множеств достижимости, основанный на пошаговой вычислительной схеме с использованием узлов «кубических» сеток для аппроксимации множеств. Предложенный алгоритм предназначен для проведения расчетов на ЭВМ архитектуры SMP и решает вопросы разделения задачи на отдельные подзадачи, синхронизации работы параллельных частей алгоритма и равномерного распределения нагрузки между процессорами. Численное моделирование примеров на ЭВМ с двумя 4-ядерными процессорами с использованием предложенного в статье параллельного алгоритма показало высокую эффективность применения технологии параллельных вычислений для расчета множеств достижимости сеточными методами.
A parallel algorithm for constructing approximate attainable sets of nonlinear control systems, pp. 459-472The paper investigates the effectiveness of shared memory parallel programming approach for constructing approximate attainable sets of nonlinear control systems in a finite-dimensional Euclidean space. In this study, we propose a parallel iterative algorithm for constructing approximate attainable sets employing a regular Cartesian grid for spatial discretization. The proposed algorithm has been designed for implementation on SMP systems and handles such issues as data decomposition, threads synchronization and distribution of work between multiple threads. Numerical experiments on a system with two quad-core processors confirmed a high efficiency of shared memory parallel programming approach for applying grid-based methods to construct approximate attainable sets.
-
Для задачи оптимального управления системой обыкновенных дифференциальных уравнений с поточечным фазовым ограничением типа равенства и конечным числом функциональных ограничений типа равенства и неравенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собою регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации.
оптимальное управление, неустойчивость, итеративная двойственная регуляризация, регуляризованный итерационный принцип Лагранжа, регуляризованный итерационный принцип максимума Понтрягина
The regularized iterative Pontryagin maximum principle in optimal control. I. Optimization of a lumped system, pp. 474-489The stable sequential Pontryagin maximum principle or, in other words, the regularized Pontryagin maximum principle in iterative form is formulated for the optimal control problem of a system of ordinary differential equations with pointwise phase equality constraint and a finite number of functional equality and inequality constraints. The main difference between it and the classical Pontryagin maximum principle is that, firstly, it is formulated in terms of minimizing sequences, secondly, the iterative process occurs in dual space and, thirdly, it is resistant to errors of raw data and gives a minimizing approximate solution in the sense of J. Warga. So it is a regularizing algorithm. The proof of the regularized Pontryagin maximum principle in iterative form is based on the methods of dual regularization and iterative dual regularization.
-
Для задачи оптимального управления линейным параболическим уравнением с распределенным, начальным и граничным управлениями и с операторным полуфазовым ограничением типа равенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собой регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации. Приводятся результаты модельных расчетов при решении конкретной задачи оптимального управления, иллюстрирующих работу алгоритма, основанного на регляризованном итерационном принципе максимума Понтрягина. В качестве конкретной оптимизационной задачи рассмотрена задача поиска минимальной по норме тройки управлений при операторном ограничении-равенстве в финальный момент времени, или, другими словами, обратная задача финального наблюдения по поиску ее нормального решения.
оптимальное управление, неустойчивость, итеративная двойственная регуляризация, регуляризованный итерационный принцип Лагранжа, регуляризованный итерационный принцип максимума ПонтрягинаThe stable sequential Pontryagin maximum principle or, in other words, the regularized Pontryagin maximum principle in iterative form is formulated for the optimal control problem of a linear parabolic equation with distributed, initial and boundary controls and operator semiphase equality constraint. The main difference between it and the classical Pontryagin maximum principle is that, firstly, it is formulated in terms of minimizing sequences, secondly, the iterative process occurs in dual space, and thirdly, it is resistant to error of raw data and gives a minimizing approximate solution in the sense of J. Warga. So it is a regularizing algorithm. The proof of the regularized Pontryagin maximum principle in iterative form is based on the dual regularization methods and iterative dual regularization. The results of model calculations of the concrete optimal control problem illustrating the work of the algorithm based on the regularized iterative Pontryagin maximum principle are presented. The problem of finding a control triple with minimal norm under a given equality constraint at the final instant of time or, in other words, the inverse final observation problem of finding a normal solution is used as a concrete model optimal control problem.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.