Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В прямоугольной области исследуются нелокальные краевые задачи для одномерного нестационарного уравнения конвекции-диффузии дробного порядка с переменными коэффициентами, описывающие диффузионный перенос той или иной субстанции, а также перенос, обусловленный движением среды. Методом энергетических неравенств выводятся априорные оценки решений нелокальных краевых задач в дифференциальной форме. Построены разностные схемы, и для них доказываются аналоги априорных оценок в разностной форме, приводятся оценки погрешности в предположении достаточной гладкости решений уравнений. Из полученных априорных оценок следуют единственность и устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью $O(h^2+\tau^2)$.
нелокальные краевые задачи, априорная оценка, нестационарное уравнение конвекции-диффузии, дифференциальное уравнение дробного порядка, дробная производная КапутоIn the rectangular region, we study nonlocal boundary value problems for the one-dimensional unsteady convection-diffusion equation of fractional order with variable coefficients, describing the diffusion transfer of a substance, as well as the transfer due to the motion of the medium. A priori estimates of solutions of nonlocal boundary value problems in differential form are derived by the method of energy inequalities. Difference schemes are constructed and analogs of a priori estimates in the difference form are proved for them, error estimates are given under the assumption of sufficient smoothness of solutions of equations. From the obtained a priori estimates, the uniqueness and stability of the solution from the initial data and the right part, as well as the convergence of the solution of the difference problem to the solution of the corresponding differential problem at the rate of $O(h^2+\tau^2)$.
-
Работа посвящена построению приближенных решений краевых задач в прямоугольнике для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя, выступающих в качестве математических моделей движения влаги и солей в почвах с фрактальной организацией. Построены разностные схемы для дифференциальных задач. Методом энергетических неравенств выведены априорные оценки решений рассматриваемых задач в дифференциальной и разностной трактовках. Из полученных априорных оценок следуют единственность, устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью, равной порядку погрешности аппроксимации. Построен алгоритм численного решения разностных схем, полученных при аппроксимации краевых задач для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя. Проведены численные эксперименты, иллюстрирующие полученные в работе теоретические выкладки.
краевые задачи, априорная оценка, нагруженные уравнения, разностная схема, псевдопараболическое уравнение, уравнение влагопереноса, уравнение Аллера, дробная производная КапутоThe paper is devoted to the construction of approximate solutions of boundary value problems in a rectangle for a loaded modified fractional-order moisture transfer equation with the Bessel operator, which act as mathematical models of the movement of moisture and salts in soils with fractal organization. Difference schemes for differential problems are constructed. The method of energy inequalities is used to derive a priori estimates of solutions to the problems under consideration in differential and difference interpretations. The obtained a priori estimates are followed by uniqueness, stability of the solution from the initial data and the right part, as well as convergence of the solution of the difference problem to the solution of the corresponding differential problem with a speed equal to the order of approximation error. An algorithm for the numerical solution of difference schemes obtained by approximating boundary value problems for a loaded modified fractional-order moisture transfer equation with the Bessel operator is constructed.
-
Изучается начально-краевая задача для многомерного псевдопараболического уравнения с переменными коэффициентами и граничными условиями третьего рода. Многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром. Показано, что при стремлении малого параметра к нулю решение полученной модифицированной задачи сходится к решению исходной задачи. Для приближенного решения полученной задачи строится локально-одномерная разностная схема А. А. Самарского. Методом энергетических неравенств получена априорная оценка, откуда следуют единственность, устойчивость и сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи. Для двумерной задачи построен алгоритм численного решения начально-краевой задачи для псевдопараболического уравнения с условиями третьего рода.
псевдопарабролическое уравнение, уравнение Аллера, локально-одномерная схема, устойчивость, сходимость разностной схемы, метод суммарной аппроксимацииWe study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.
-
Работа посвящена исследованию второй начально-краевой задачи для дифференциального уравнения третьего порядка псевдопараболического типа с переменными коэффициентами в многомерной области с произвольной границей. Рассматриваемое многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром и для полученного уравнения строится локально-одномерная разностная схема А.А. Самарского. С помощью принципа максимума получена априорная оценка решения локально-одномерной разностной схемы в равномерной метрике в норме $C$. Доказаны устойчивость и сходимость локально-одномерной разностной схемы.
псевдопараболическое уравнение, уравнение влагопереноса, локально-одномерная схема, устойчивость, сходимость разностной схемы, аддитивность схемыThe work is devoted to the study of the second initial-boundary value problem for a general-form third-order differential equation of pseudoparabolic type with variable coefficients in a multidimensional domain with an arbitrary boundary. In this paper, a multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter, and a locally one-dimensional difference scheme by A.A. Samarskii is used. Using the maximum principle, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme in the uniform metric in the $C$ norm. The stability and convergence of the locally one-dimensional difference scheme are proved.
-
Рассматривается трехмерная бидиффузионная конвекция в бесконечном по горизонтали слое несжимаемой жидкости в окрестности точек бифуркации Хопфа, взаимодействующая с полем горизонтальной завихренности. Методом многомасштабных разложений получено семейство амплитудных уравнений, описывающее вариации амплитуды конвективных ячеек, форма которых задаётся как суперпозиция конечного числа конвективных валиков с различными волновыми векторами.
Для численного моделирования полученных систем амплитудных уравнений были разработаны несколько численных схем, основанных на современных ETD (exponential time differencing) псевдоспектральных методах. Написаны пакеты программ для моделирования валиковой конвекции, а также конвекции с ячейками квадратного и гексагонального типов. Численное моделирование показало, что конвекция имеет вид вытянутых "облаков" или "нитей". Было замечено, что в системе достаточно быстро развивается состояние диффузионного хаоса, когда первоначальное симметричное состояние разрушается, и конвекция становится нерегулярной как по пространству, так и по времени. При этом в некоторых областях возникают пиковые всплески завихренности.
Three-dimensional double-diffusive convection in a horizontally infinite layer of an uncompressible liquid interacting with horizontal vorticity field is considered in the neighborhood of Hopf bifurcation points. A family of amplitude equations for variations of convective cells amplitude is derived by multiple-scaled method. Shape of the cells is given as a superposition of a finite number of convective rolls with different wave vectors.
For numerical simulation of the obtained systems of amplitude equations a few numerical schemes based on modern ETD (exponential time differencing) pseudospectral methods have been developed. The software packages have been written for simulation of roll-type convection and convection with square and hexagonal type cells. Numerical simulation has showed that the convection takes the form of elongated “clouds” or “filaments”. It has been noted that in the system quite rapidly a state of diffusive chaos is developed, where the initial symmetric state is destroyed and the convection becomes irregular both in space and time. At the same time in some areas there are bursts of vorticity.
-
В современной физической литературе неоднократно возникала потребность в формулах, позволяющих в квантовой одномерной задаче рассеяния свести вычисление вероятности отражения (прохождения) для потенциала, состоящего из нескольких «барьеров», к вероятностям отражения и прохождения через эти «барьеры». В настоящей работе исследуется задача рассеяния для разностного оператора Шрёдингера с потенциалом, являющимся суммой N функций (описывающих «барьеры» или «слои») с попарно непересекающимися носителями. С помощью уравнения Липпмана-Швингера доказана теорема, позволяющая вычисление амплитуд отражения и прохождения для данного потенциала свести к вычислению амплитуд отражения и прохождения для слагаемых. Для N=2 получены простые явные формулы, осуществляющие такое сведение. Рассмотрены частные случаи четного первого барьера и двух одинаковых четных (после соответствующих сдвигов) барьеров. Разумеется, аналогичные результаты справедливы и для вероятностей отражения и прохождения. Получено простое уравнение для нахождения резонансов двухбарьерной структуры в терминах амплитуд для каждого из двух барьеров.
В статье также приведена иная схема доказательства полученных результатов, основанная на разложении в ряд T-оператора, позволяющая обосновать физические представления о рассеянии на многослойной структуре как о многократном рассеянии на отдельно взятых слоях. При доказательстве утверждений используется известный прием сведения уравнения Липпмана-Швингера к «модифицированному» уравнению в гильбертовом пространстве, что позволяет, в свою очередь, воспользоваться теорией Фредгольма. Конечно, все полученные результаты остаются справедливыми и для «непрерывного» оператора Шрёдингера, а выбор дискретного подхода обусловлен его растущей популярностью в квантовой теории твердого тела.
In modern physics literature, the need for formulas that permit, in a quantum one-dimensional problem, to reduce a calculation of the reflection (transmission) probability for the potential consisting of some “barriers” to the reflection and transmission probabilities over these “barriers” repeatedly occurred. In this paper, we study the scattering problem for the difference Schrodinger operator with the potential which is the sum of N functions (describing the “barriers” or “layers”) with pairwise disjoint supports. With the help of the Lippmann-Schwinger equation, we proved the theorem which reduces the calculation of the reflection and transmission amplitudes for this potential, to the calculation of the ones for these barriers. For N=2 simple explicit formulas which realized this reduction were obtained. The particular cases for the even first barrier and two identical even (after appropriate shifts) barriers were studied. Of course, the similar results hold for the reflection (transmission) probabilities. We obtained the simple equation for the double-barrier structure resonances in terms of the amplitudes of each of the two barriers.
In the paper, we also present the alternative scheme of the proof of the obtained results which are based on the series expansion of the T-operator. This approach substantiates the physical understanding of the scattering by a multilayer structure as multiple scattering on separate layers. To proof the theorems, the known method of reduction of the Lippmann-Schwinger equation to the “modified” equation in a Hilbert space is used. Of course, all the results remain valid for the “continuous” Schrodinger operator, and the choice of the discrete approach is due to its growing popularity in the quantum theory of solids.
-
В настоящее время в рамках управления воздушным движением крайне важной является задача формирования оптимального безопасного расписания прибытия самолетов в точку слияния воздушных трасс. Безопасность результирующей очереди обеспечивается наличием безопасного временнóго интервала между соседними прибытиями в точку слияния. Изменение момента прибытия может обеспечиваться изменением скорости движения самолета и/или использованием схем, удлиняющих или укорачивающих его траекторию. Оптимальность результирующей очереди рассматривается с точки зрения дополнительных требований: минимизации отклонения назначенных моментов прибытия от номинальных, минимизации количества изменений порядка самолетов в очереди, минимизации расхода топлива и т.д. Минимизируемый критерий оптимальности, отражающий эти требования, часто выбирается как сумма индивидуальных штрафов каждому судну за отклонение назначенного момента прибытия от номинального. Функция индивидуального штрафа почти во всех статьях рассматривается либо как модуль отклонения, либо как функция, похожая на модуль, но с различными наклонами ветвей, что приводит к разному штрафу за задержку и ускорение. В целом, задача может быть разделена на две: одна связана с поиском оптимального порядка прибытия судов, вторая — с выбором оптимальных моментов прибытия при заданном порядке. Последняя подзадача достаточно просто решается, поскольку чаще всего может быть формализована как задача линейного программирования. Однако первая решается значительно сложнее, для ее решения применяются разнообразные методы — от эвристических и генетических процедур до подходов смешанного целочисленного линейного программирования. В статье предлагаются условия на параметры задачи, достаточные для того, чтобы порядок оптимальных моментов прибытия самолетов в точку слияния совпадал с порядком номинальных моментов. Это позволяет исключить первую подзадачу из решения всей задачи.
воздушные суда, точка слияния воздушных трасс, бесконфликтное слияние потоков, номинальные моменты прибытия, назначенные моменты прибытия, объединенная очередь самолетовNowadays, the problem of creating an optimal safe schedule for arrival of aircraft coming in several flows to a checkpoint, where these flows join into one, is very important for air-traffic management. Safety of the resultant queue is present if there is a safe interval between neighbor arrivals to the merge point. Change of an arrival instant of an aircraft is provided by changing its velocity and/or usage of fragments of the air-routes scheme, which elongate or shorten the aircraft path. Optimality of the resultant queue is considered from the point of some additional demands: minimization of the deviation of the actual aircraft arrival instant from the nominal one, minimization of order changes in the resultant queue in comparison with the original one, minimization of fuel expenditures, etc. The optimality criterion to be minimized, which reflects these demands, is often taken as a sum of penalties for deviations of the assigned arrival instants from the nominal ones. Each individual penalty is considered in almost all papers as either the absolute value of the difference between the assigned and nominal arrival instants or a similar function with asymmetric branches (which punishes delays and accelerations of an aircraft in different ways). The problem can be divided into two subproblems: one is a search for an optimal order of aircraft in the resultant queue, and the other is a search for optimal arrival instants for a given order. The second problem is quite simple since it can be formalized in the framework of linear programming and solved quite efficiently. However, the first one is very difficult and now is solved by various methods. The paper suggests sufficient conditions for the problem, which guarantee that the order of the optimal assigned instants is the same as the order of the nominal ones and, therefore, exclude the first subproblem.
-
Исследуется асимптотическое поведение решения задачи Дирихле для бисингулярно возмущенного эллиптического уравнения второго порядка в кольце с двумя независимыми переменными. Для построения асимптотического разложения решения задачи применяется модифицированная схема метода пограничных функций Вишика-Люстерника-Васильевой-Иманалиева. Предлагаемый метод отличается от метода согласования тем, что нарастающие особенности внешнего разложения фактически из него убираются и с помощью вспомогательного асимптотического ряда полностью вносятся во внутренние разложения, а от классического метода пограничных функций здесь пограничные функции убывают степенным характером, а не экспоненциально. Асимптотическое разложение решения представляет собой ряд Пюизё. Полученное асимптотическое разложение решения задачи Дирихле обосновано принципом максимума.
формальное асимптотическое разложение, задача Дирихле, функции Эйри, ряд Пюизё, малый параметр, метод погранфункций, бисингулярное возмущение
Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring, pp. 517-525The paper refers to the asymptotic behavior of the Dirichlet problem solution for a bisingular perturbed elliptic second-order equation with two independent variables in the ring. To construct the asymptotic expansion of the solution the authors apply the modified scheme of the method of boundary functions by Vishik-Lyusternik-Vasil'eva-Imanaliev. The proposed method differs from the matching method by the fact that growing features of the outer expansion are in fact removed from it and with the help of an auxiliary asymptotic series are placed entirely in the internal expansion, and from the classical method of boundary functions by the fact that boundary functions have power-law decrease, not exponential. An asymptotic expansion of the solution is a series of Puiseux. The resulting asymptotic expansion of the Dirichlet problem solution is justified by the maximum principle.
-
Неизотермическое ползущее течение вязкоупругой жидкости со свободной поверхностью при формовании волокон, с. 101-108Работа посвящена моделированию ползущего движения вязкоупругой жидкости со свободной поверхностью, реализующейся при входе полимерной жидкости в формующий канал и выходе из него. Движение жидкости описывается уравнениями сохранения массы, импульса и энергии, дополненное определяющим реологическим уравнением состояния среды Гиезекуса. На основе метода конечных элементов разработан устойчивый численный алгоритм решения задачи. Проведены численные исследования по определению формы выходной струи для различных режимов течения и формы насадки. Исследована картина распределения скоростей жидкости, давления, напряжений и температуры при увеличении степени нагрева стенки формующего канала. Получены численные результаты зависимости эффекта разбухания полимерной жидкости от параметров реологической модели и температурных факторов.
Nonisothermal creeping flow of viscoelastic fluid with free surface during forming fibers, pp. 101-108Numerical simulation flow of viscoelastic fluid with free surface, which is realized in entrance and output flow in extrusion die was performed. The flow of liquid is described by equations of conservation of mass, momentum and thermal energy with rheological constitutive equation of Giesekesus. On basis of finite element method the stable numerical scheme was developed to solve this problem. Different numerical experiments was performed to define the configuration of outflow jet in various regimes and construction of die. The distribution of flow velocity fields, pressure and temperature are investigated on dependence of heating the walls. The ratio of extrusion in dependence of parameters the rheological model are investigated.
-
Сходимость разностного метода для решения двумерного волнового уравнения с наследственностью, с. 78-92Рассмотрено волновое уравнение с двумя пространственными и одной временной независимыми переменными и эффектом наследственности вида $$\frac{\partial^2 u}{\partial t^2}=a^2\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + f\big(x,y,t,u(x,y,t),u_t(x,y,\cdot)\big),\\u_t(x,y,\cdot)=\left\{u(x,y,t+\xi),-\tau \leqslant \xi\leqslant 0\right\}. $$На основе идеи разделения текущего состояния и функции-предыстории сконструировано семейство сеточных методов для численного решения этого уравнения. По текущему состоянию строится полный аналог известного для уравнения без запаздывания метода с факторизацией, а влияние предыстории учитывается с помощью интерполяционных конструкций. Исследован порядок локальной погрешности алгоритма. Получена теорема о сходимости и порядке сходимости методов с помощью вложения в общую разностную схему систем с последействием. Приводятся результаты расчетов тестового примера с переменным запаздыванием.
разностные методы, двумерное волновое уравнение, запаздывание, интерполяция, факторизация, порядок сходимости
Convergence of the difference method of solving the two-dimensional wave equation with heredity, pp. 78-92The paper presents the consideration of the wave equation with two space variables and one time variable and with heredity effect $$\frac{\partial^2 u}{\partial t^2}=a^2\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + f\big(x,y,t,u(x,y,t),u_t(x,y,\cdot)\big),\\u_t(x,y,\cdot)=\left\{u(x,y,t+\xi),-\tau \leqslant \xi\leqslant 0\right\}. $$A family of grid methods is constructed for the numerical solution of this equation; the methods are based on the idea of separating the current state and the history function. A complete analog of the factorization method which is known for an equation without delay is constructed according to the current state. Influence of prehistory is taken into consideration by interpolation constructions. The local error order of the algorithm is investigated. A theorem on the convergence and on the order of convergence of methods is obtained by means of embedding into a general difference scheme with aftereffect. The results of calculating a test example with variable delay are presented.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.